An analytical study of effect of heat source on MHD blood flow through bifurcated arteries has been done. The blood flowing through arteries is treated to be unsteady Newtonian flow. The coupled linear partial differential equations are solved by converting into ordinary linear differential equations by choosing the axial velocity, normal velocity and temperature field as a functions of y and t along with corresponding boundary conditions. The expressions are obtained for axial velocity, normal velocity and temperature field. The effects of various parameters like Prandtl Number (Pr), Heat Source Parameter (S) and Magnetic Field (M) on axial velocity, normal velocity and temperature field are investigated. It was found that heat source and magnetic field modify the flow patterns and increase the temperature of the blood
Library & Information Science has completed its 100 years of education in India. Research has always been regarded as the most important intellectual activity in the higher education system, therefore this research article aims to provide a comprehensive picture of doctoral research carried out by various LIS departments of India. Universities offering regular PhD programme were identified using various primary/secondary, online/offline sources. A questionnaire was designed for data collection and the same was sent to the heads and faculty members of LIS departments of these universities by e-mail/in print. Based on data collected from 81 departments located in 22 states of India, the growth and development of LIS research in India since the award of first PhD in 1950 till 2012 is traced.
Elastomers and their composites are extensively used as a thermal insulation system in heat treatment, power generation, fire protection, and aerospace. Among different elastomers, low-density ethylene propylene diene terpolymer (EPDM) has interesting properties, such as excellent resistance to aging and oxidative degradation due to its saturated back bone. Furthermore, introduction of polyimide (PI) to the base elastomer increases its thermal stability. On the other hand, carbon nanofiber (CNF) reinforces the matrix to enhance the mechanical properties with an additional advantage of better char yield. To achieve better rubber-filler compatibilization, modification of EPDM was carried out by grafting with maleic anhydride (MAH). Morphological studies by scanning electron microscopy and high-resolution transmission electron microscopy exhibited uniform dispersion of nanofillers throughout MAH grafted EPDM matrix. Thermal properties of the EPDM/PI nanocomposites were characterized by thermogravimetric analysis and differential scanning calorimetry. Besides these, thermal conductivity, thermal diffusivity, and specific heat were also measured. PI- and CNF-filled maleated EPDM composites showed very good physical and thermomechanical properties for high-temperature insulation compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.