We studied the effects of humic substances (HS) on the sorption of Fe(II) onto Al-oxide and clay sorbents at pH 7.5 with a combination of batch kinetic experiments and synchrotron Fe K-edge EXAFS analyses. Fe(II) sorption was monitored over the course of 4 months in anoxic clay and Al-oxide suspensions amended with variable HS types (humic acid, HA; or fulvic acid, FA) and levels (0, 1, and 4 wt%), and with differing Fe(II) and HS addition sequences (co-sorption and pre-coated experiments, where Fe(II) sorbate was added alongside and after HS addition, respectively). In the Al-oxide suspensions, the presence of HS slowed down the kinetics of Fe(II) sorption, but had limited, if any, effect on the equilibrium aqueous Fe(II) concentrations. EXAFS analyses revealed precipitation of Fe(II)–Al(III)-layered double hydroxide (LDH) phases as the main mode of Fe(II) sorption in both the HA-containing and HA-free systems. These results demonstrate that HS slow down Fe(II) precipitation in the Al-oxide suspensions, but do not affect the composition or stability of the secondary Fe(II)–Al(III)-LDH phases formed. Interference of HS with the precipitation of Fe(II)–Al(III)-LDH was attributed to the formation organo-Al complexes HS limiting the availability of Al for incorporation into secondary layered Fe(II)-hydroxides. In the clay systems, the presence of HA caused a change in the main Fe(II) sorption product from Fe(II)–Al(III)-LDH to a Fe(II)-phyllosilicate containing little structural Al. This was attributed to complexation of Al by HA, in combination with the presence of dissolved Si in the clay suspension enabling phyllosilicate precipitation. The change in Fe(II) precipitation mechanism did not affect the rate of Fe(II) sorption at the lower HA level, suggesting that the inhibition of Fe(II)–Al(III)-LDH formation in this system was countered by enhanced Fe(II)-phyllosilicate precipitation. Reduced rates of Fe(II) sorption at the higher HA level were attributed to surface masking or poisoning by HA of secondary Fe(II) mineral growth at or near the clay surface. Our results suggest that HS play an important role in controlling the kinetics and products of Fe(II) precipitation in reducing soils, with effects modulated by soil mineralogy, HS content, and HS properties. Further work is needed to assess the importance of layered Fe(II) hydroxides in natural reducing environments.
Farmed urban soils often bear legacies of historic contamination from anthropogenic and industrial sources. Soils from seven community farms in Newark, New Jersey (NJ), USA, were analyzed to determine the concentration and speciation of lead (Pb) depending on garden location and cultivation status. Samples were evaluated using single-step 1 M nitric acid (HNO3) and Tessier sequential extractions in combination with X-ray absorption fine structure spectroscopy (XAFS) analysis. Single-step extractable Pb concentration ranged from 22 to 830 mg kg−1, with 21% of samples reporting concentrations of Pb > 400 mg kg−1, which is the NJ Department of Environmental Protection (NJDEP) limit for residential soils. Sequential extractions indicated lowest Pb concentrations in the exchangeable fraction (0–211 mg kg−1), with highest concentrations (0–3002 mg kg−1) in the oxidizable and reducible fractions. For samples with Pb > 400 mg kg−1, Pb distribution was mostly uniform in particle size fractions of <0.125–1 mm, with slightly higher Pb concentrations in the <0.125 mm fraction. XAFS analysis confirmed that Pb was predominantly associated with pyromorphite, iron–manganese oxides and organic matter. Overall results showed that lowest concentrations of Pb are detected in raised beds, whereas uncultivated native soil and parking lot samples had highest values of Pb. As most of the Pb is associated with reducible and oxidizable soil fractions, there is a lower risk of mobility and bioavailability. However, Pb exposure through ingestion and inhalation pathways is still of concern when directly handling the soil. With increasing interest in urban farming in cities across the USA, this study highlights the need for awareness of soil contaminants and the utility of coupled macroscopic and molecular-scale geochemical techniques to understand the distribution and speciation of soil Pb.
Phosphate rock (PR) is a finite and limited resource from which phosphorus (P) is mined for use in fertilizer. Approximately 40% of P applied as fertilizer is lost to erosion, and nutrient pollution and eutrophication caused by run-off from excess P in agriculture is a pervasive environmental issue. As agricultural demand for P fertilizers increases, existing reserves of PR are depleted and alternate sources need to be considered. To ensure a sustained supply of P without destabilizing global food security, there is an urgent need to implement feasible policy and technology options. Establishing a circular economy where P is recovered from existing nutrient-rich waste streams and reused as fertilizers is a viable solution to the dual problem of nutrient pollution and availability. This policy memo offers the Environmental Protection Agency (EPA) and US Congress guidance to prioritize phosphorus policies by: (1) establishing a Federal Advisory Committee on a circular economy for P; (2) increasing Congressional funding of P-recovery research, (3) issuing a national ban on certain phosphate-bearing products, and (4) deregulating struvite from the 40 CFR Part 503 Biosolids Rule. We recommend implementation of a synergistic combination of the proposed policy options to accelerate transition to a circular P-economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.