Signals from peripheral physiology (e.g., ECG, EMG, and GSR) in conjunction with machine learning techniques can be used for the automatic detection of affective states. The affect detector can be user-independent, where it is expected to generalize to novel users, or user-dependent, where it is tailored to a specific user. Previous studies have reported some success in detecting affect from physiological signals, but much of the work has focused on induced affect or acted expressions instead of contextually constrained spontaneous expressions of affect. This study addresses these issues by developing and evaluating user-independent and user-dependent physiology-based detectors of nonbasic affective states (e.g., boredom, confusion, curiosity) that were trained and validated on naturalistic data collected during interactions between 27 students and AutoTutor, an intelligent tutoring system with conversational dialogues. There is also no consensus on which techniques (i.e., feature selection or classification methods) work best for this type of data. Therefore, this study also evaluates the efficacy of affect detection using a host of feature selection and classification techniques on three physiological signals (ECG, EMG, and GSR) and their combinations. Two feature selection methods and nine classifiers were applied to the problem of recognizing eight affective states (boredom, confusion, curiosity, delight, flow/engagement, surprise, and neutral). The results indicated that the user-independent modeling approach was not feasible; however, a mean kappa score of 0.25 was obtained for user-dependent models that discriminated among the most frequent emotions. The results also indicated that k-nearest neighbor and Linear Bayes Normal Classifier (LBNC) classifiers yielded the best affect detection rates. Single channel ECG, EMG, and GSR and three-channel multimodal models were generally more diagnostic than two-channel models.
Abstract. It is widely acknowledged that learners experience a variety of emotions while interacting with Intelligent Tutoring Systems (ITS), hence, detecting and responding to emotions might improve learning outcomes. This study uses machine learning techniques to detect learners' affective states from multichannel physiological signals (heart activity, respiration, facial muscle activity, and skin conductivity) during tutorial interactions with AutoTutor, an ITS with conversational dialogues. Learners were asked to self-report (both discrete emotions and degrees of valence/arousal) the affective states they experienced during their sessions with AutoTutor via a retrospective judgment protocol immediately after the tutorial sessions. In addition to mapping the discrete learning-centered emotions (e.g., confusion, frustration, etc) on a dimensional valence/arousal space, we developed and validated an automatic affect classifier using physiological signals. Results indicate that the classifier was moderately successful at detecting naturally occurring emotions during the AutoTutor sessions.
Abstract-In this paper we present a system that uses the human ability to control a video game on a mobile device using electroencephalographic (EEG) Mu rhythms. The signals were obtained using a specially designed electrode cap and equipment, and sent through a Bluetooth connection to a PC that processes it in real time. The signal was then mapped onto two control signals and sent through wireless connection to a mobile gaming device BreakOut − . We have also investigated the human's ability to play the video game by manipulating neuronal motor cortex activity in the presence of a visual feedback environment. The participants played the video game by using their thoughts only with up to 80% accuracy over controlling the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.