A new 3-D chaotic dynamical system with a peanut-shaped closed curve of equilibrium points is introduced in this work. Since the new chaotic system has infinite number of rest points, the new chaotic model exhibits hidden attractors. A detailed dynamic analysis of the new chaotic model using bifurcation diagrams and entropy analysis is described. The new nonlinear plant shows multi-stability and coexisting convergent attractors. A circuit model using MultiSim of the new 3-D chaotic model is designed for engineering applications. The new multi-stable chaotic system is simulated on a field-programmable gate array (FPGA) by applying two numerical methods, showing results in good agreement with numerical simulations. Consequently, we utilize the properties of our chaotic system in designing a new cipher colour image mechanism. Experimental results demonstrate the efficiency of the presented encryption mechanism, whose outcomes suggest promising applications for our chaotic system in various cryptographic applications.
Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh-Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan-Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh-Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.In [2] J.J. Hopfield introduced the neuron model that nowadays is known as the Hopfield neural network. Ten years later, a modified model of Hopfield neural network was proposed in [3], and applied in information processing. Immediately, the Hopfield neural network was adapted to generate chaotic behavior in [4] where the authors explored bifurcation diagrams. In [5] the simplified Hopfield neuron model was designed to use a sigmoid as activation function, and three neurons were used to generate chaotic behavior. In addition, the authors performed an optimization process updating the weights of the neurons interconnections. The Hopfield neuron was combined with a chaotic map in [6] to be applied in chaotic masking. More recently, the authors in [7] proposed an image encryption algorithm using the Hopfield neural network. In the same direction, the authors in [8] detailed the behavior of Hindmarsh-Rose neuron to generate chaotic behavior. Its bifurcation diagrams were described in [9], and the results were used to select the values of the model to improve chaotic behavior. Hindmarsh-Rose neurons were synchronized in [10], optimizing the scheme of Lyapunov function with two gain coefficients. In this way, the synchronization region is estimated by evaluating the Lyapunov stability. Two Hindmarsh-Rose neurons were synchronized in [11], and the system was used to mask information in continuous time. To show that the neurons generate chaotic behavior, one must compute Lyapunov exponents, and for the Hindmarsh-Rose neuron they were evaluated by the TISEAN package in [12].The Hopfield neural network has been widely applied in chaotic systems [13][14][15]. This network consists of three neurons, and the authors in [13] proposed a simplified model by removing the synaptic weight connection of the third and second neuron in the original Hopfield network. Numerical simulations were carried out considering values from t...
Synchronizing chaotic oscillators has been a challenge to guarantee successful applications in secure communications. That way, three synchronization techniques are applied herein to twenty two chaotic oscillators, three of them based on piecewise-linear functions and nineteen proposed by Julien C. Sprott. These chaotic oscillators are simulated to generate chaotic time series that are used to evaluate their Lyapunov exponents and Kaplan-Yorke dimension to rank their unpredictability. The oscillators with the high positive Lyapunov exponent are implemented into a field-programmable gate array (FPGA), and afterwards they are synchronized in a master-slave topology applying three techniques: the seminal work introduced by Pecora-Carroll, Hamiltonian forms and observer approach, and open-plus-closed-loop (OPCL). These techniques are compared with respect to their synchronization error and latency that is associated to the FPGA implementation. Finally, the chaotic oscillators providing the high positive Lyapunov exponent are synchronized and applied to a communication system with chaotic masking to perform a secure image transmission. Correlation analysis is performed among the original image, the chaotic channel and the recovered image for the three synchronization schemes. The experimental results show that both Hamiltonian forms and OPCL can recover the original image and its correlation with the chaotic channel is as low as 0.00002, demonstrating the advantage of synchronizing chaotic oscillators with high positive Lyapunov exponent to guarantee high security in data transmission.
This paper introduces a new chaotic system with two circles of equilibrium points. The dynamical properties of the proposed dynamical system are investigated through evaluating Lyapunov exponents, bifurcation diagram and multistability. The qualitative study shows that the new system exhibits coexisting periodic and chaotic attractors for different values of parameters. The new chaotic system is implemented in both analog and digital electronics. In the former case, we introduce the analog circuit of the proposed chaotic system with two circles of equilibrium points using amplifiers, which is simulated in MultiSIM software, version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB. In addition, we perform the digital implementation of the new chaotic system using field-programmable gate arrays (FPGA), the experimental observations of the attractors of which confirm its suitability to generate chaotic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.