Sepsis is characterized by systemic biochemical alterations including the central nervous system in the early times and cognitive impairment at later times after sepsis induction in the animal model. Recent studies have shown that, besides its hematological activity, erythropoietin (EPO) has cytoprotective effects on various cells and tissues. In order to corroborate elucidating the effects of alternative drugs for sepsis treatment, we evaluated the effects of both acute and chronic EPO treatment on oxidative stress and energetic metabolism in the hippocampus, and cognitive impairment, respectively, after sepsis induction by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent CLP with "basic support" or sham operation. In the acute treatment, EPO was administered once immediately after CLP induction. The rats were then killed after 6 and 24 h, and the hippocampus was removed for analysis of oxidative stress and energetic metabolism, respectively. Regarding the chronic treatment, EPO was administered once daily until the 4th day after induction. Aversive memory was tested on the 10th day after surgery. It was observed that the acute use of EPO (a single dose) alters the oxidative parameters and energetic metabolism. Chronic use (4 days) reversed cognitive impairment in the sepsis animal model. Mortality rates were attenuated only during chronic treatment.
The pathogenesis of sepsis is characterized by an overwhelming systemic inflammatory response that can lead to multiple organ failure. Considering that we have recently demonstrated that mitochondrial respiratory chain and creatine kinase (CK) are altered in the brain of rats after cecal ligation and perforation (CLP) and that a combination of N-acetylcysteine/deferoxamine (NAC/DFX), taurine and RC-3095 were shown to be an effective treatment of sepsis, we investigated whether the alterations of these enzymes may be reversed by these drugs. The results demonstrated that CLP inhibited complexes I and II, and that all the treatments were able to reverse this inhibition in all brain areas studied in the present work. On the other hand, complexes III and IV were not affected by sepsis neither by any of the treatments. An increase in CK activity in brain of rats 12 h after CLP was also verified; the administration of NAC/DFX and taurine reversed the increase in CK activity in hippocampus, cerebral cortex, cerebellum and striatum. On the other hand, RC-3095 significantly decreased CK activity, when compared to sham group in all brain areas studied. This is a preliminary study which showed beneficial effects of the treatments we proposed.
Background: Studies have shown the relationship between neuroinflammation and depressive- like parameters. However, research still has not been carried out to evaluate neuroinflammation in the neonatal period and psychiatric disorders in adulthood. Objective: To verify the association between neonatal immune activation and depressive-like parameters in adulthood using an animal model. Methods: Two days old C57BL/6 animals were exposed to lipopolysaccharides (LPS) or phosphate- buffered saline (PBS). When the animals were 46 days old, they received PBS or Imipramine at 14 days. At 60 days, the consumption of sucrose; immobility time; adrenal gland and the hippocampus weight; levels of plasma corticosterone and hippocampal Brain-derived neurotrophic factor (BDNF) were evaluated. Results: It was observed that the animals exposed to LPS in the neonatal period and evaluated in adulthood decreased the consumption of sucrose and had reducted hippocampus weight. Also, the exposed animals presented an increase of immobility time, adrenal gland weight and plasma levels of corticosteroids. The use of imipramine did not only modify the decreased hippocampal weight. On the other hand, there were no alterations in the BDNF levels in the hippocampus with or without the use of imipramine. Conclusion: These results suggest that neonatal immune activation may be associated with depressive- like parameters in adulthood. It is believed that endotoxemia may trigger physiological and behavioral alterations, increasing vulnerability for the development of depression in adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.