Neuronal synchronization in basal ganglia circuits plays a key role in the encoding of movement, procedural memory storage and habit formation. Striatal dopamine (DA) depletion during Parkinsonism causes abnormal synchronization in corticobasal ganglia loops resulting in motor dysfunction. However, the dynamics of the striatal microcircuit underlying abnormal synchronization in Parkinsonism is poorly understood. Here we used targeted whole-cell recordings, calcium imaging allowing the recording from dozens of cells simultaneously and analytical approaches, to describe the striking alterations in network dynamics that the striatal microcircuit undergoes following DA depletion in a rat model of Parkinson disease (PD): In addition to a significant enhancement of basal neuronal activity frequent periods of spontaneous synchronization were observed. Multidimensional reduction techniques of vectorized network dynamics revealed that increased synchronization resulted from a dominant network state that absorbed most spontaneously active cells. Abnormal synchronous activity can be virtually abolished by glutamatergic antagonists, while blockade of GABAergic transmission facilitates the engagement of striatal cell assemblies in the dominant state. Finally, a dopaminergic receptor agonist was capable of uncoupling neurons from the dominant state. Abnormal synchronization and "locking" into a dominant state may represent the basic neuronal mechanism that underlies movement disorders at the microcircuit level.
The striosome (or patch) was first identified with anatomical techniques as neurons organized in a three-dimensional labyrinth inserted in and interdigitating the rest of neostriatum: the matrix. Striosome and matrix rapidly became known as two neuronal compartments expressing different biochemical markers, embryonic development and afferent and efferent connectivity. In spite of extensive intrinsic neuronal axonal and dendritic extensions supposed to exchange information between matrix and striosomes, evidence suggested the presence of independent areas. Here, we report that indeed these two areas do not exchange synaptic information. We used genetic expression of channel rhodopsin 2 carried by adeno-associated virus serotype 10 (AAVrh10) that only expresses in neurons of the matrix compartment. Whole-cell patch-clamp recordings of matrix neurons activated by light pulses consistently produced inhibitory postsynaptic currents (IPSCs), but the same manipulation did not evoke IPSCs in striosome neurons. The matrix contains both direct and indirect striatal output pathways. By targeting striatal matrix expression of designer receptors exclusively activated by a designer drug (DREADD) hM3di carried by AAVrh10, we were able to inhibit the matrix neuronal compartment of the dorsolateral striatum during performance of a learned single-pellet reach-to-grasp task. As expected, inhibition of matrix neurons by systemic administration of DREADD agonist clozapine-n-oxide interfered with performance of the learned task.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-015-1000-4) contains supplementary material, which is available to authorized users.
For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1‐ or D2‐receptor‐expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP‐expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms.
Microscale electrodes, on the order of 10-100 μm, are rapidly becoming critical tools for neuroscience and brain-machine interfaces (BMIs) for their high channel counts and spatial resolution, yet the mechanical details of how probes at this scale insert into brain tissue are largely unknown. Here, we performed quantitative measurements of the force and compression mechanics together with real-time microscopy for in vivo insertion of a systematic series of microelectrode probes as a function of diameter (7.5-100 μm and rectangular Neuropixels) and tip geometry (flat, angled, and electrochemically sharpened). Results elucidated the role of tip geometry, surface forces, and mechanical scaling with diameter. Surprisingly, the insertion force post-pia penetration was constant with distance and did not depend on tip shape. Real-time microscopy revealed that at small enough lengthscales (<25 μm), blood vessel rupture and bleeding during implantation could be entirely avoided. This appears to occur via vessel displacement, avoiding capture on the probe surface which led to elongation and tearing for larger probes. We propose a new, three-zone model to account for the probe size dependence of bleeding, and provide mechanistic guidance for probe design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.