An unsteady squeezing flow of Casson fluid having magnetohydrodynamic (MHD) effect and passing through porous medium channel is modeled and investigated. Similarity transformations are used to convert the partial differential equations (PDEs) of non-Newtonian fluid to a highly nonlinear fourth-order ordinary differential equation (ODE). The obtained boundary value problem is solved analytically by Homotopy Perturbation Method (HPM) and numerically by explicit Runge-Kutta method of order 4. For validity purpose, we compare the analytical and numerical results which show excellent agreement. Furthermore, comprehensive graphical analysis has been made to investigate the effects of various fluid parameters on the velocity profile. Analysis shows that positive and negative squeeze numberSqhave opposite effect on the velocity profile. It is also observed that Casson parameterβshows opposite effect on the velocity profile in case of positive and negative squeeze numberSq. MHD parameterMgand permeability constantMphave similar effects on the velocity profile in case of positive and negative squeeze numbers. It is also seen that, in case of positive squeeze number, similar velocity profiles have been obtained forβ,Mg, andMp. Besides this, analysis of skin friction coefficient has also been presented. It is observed that squeeze number, MHD parameter, and permeability parameter have direct relationship while Casson parameter has inverse relationship with skin friction coefficient.
Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.