Artículo de publicación ISIFlows over time provide a natural and convenient description for the dynamics of a continuous stream of particles traveling from a source to a sink in a network, allowing to track the progress of each infinitesimal particle along time. A basic model for the propagation of flow is the so-called fluid queue model in which the time to traverse an edge is composed of a flow-dependent waiting time in a queue at the entrance of the edge plus a constant travel time after leaving the queue. In a dynamic network routing game each infinitesimal particle is interpreted as a player that seeks to complete its journey in the least possible time. Players are forward looking and anticipate the congestion and queuing delays induced by others upon arrival to any edge in the network. Equilibrium occurs when each particle travels along a shortest path. This paper is concerned with the study of equilibria in the fluid queue model and provides a constructive proof of existence and uniqueness of equilibria in single origin-destination networks with piecewise constant inflow rate. This is done through a detailed analysis of the underlying static flows obtained as derivatives of a dynamic equilibrium. Furthermore, for multicommodity networks, we give a general nonconstructive proof of existence of equilibria when the inflow rates belong to Lp.Nucleo Milenio Informacion y Coordinacion en Rede
Abstract. After a sequence of improvements Boyd et al. [TSP on cubic and subcubic graphs, Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6655, Springer, Heidelberg, 2011, pp. 65-77] proved that any 2-connected graph whose n vertices have degree 3, i.e., a cubic 2-connected graph, has a Hamiltonian tour of length at most (4/3)n, establishing in particular that the integrality gap of the subtour LP is at most 4/3 for cubic 2-connected graphs and matching the conjectured value of the famous 4/3 conjecture. In this paper we improve upon this result by designing an algorithm that finds a tour of length (4/3 − 1/61236)n, implying that cubic 2-connected graphs are among the few interesting classes of graphs for which the integrality gap of the subtour LP is strictly less than 4/3. With the previous result, and by considering an even smaller , we show that the integrality gap of the TSP relaxation is at most 4/3 − even if the graph is not 2-connected (i.e., for cubic connected graphs), implying that the approximability threshold of the TSP in cubic graphs is strictly below 4/3. Finally, using similar techniques we show, as an additional result, that every Barnette graph admits a tour of length at most (4/3 − 1/18)n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.