This work presents a new global optimization algorithm of functions inspired by the dynamic behavior of reversible cellular automata, denominated Reversible Elementary Cellular Automata Algorithm (RECAA). This algorithm adapts the reversible evolution rules in elementary cellular automata (in one dimension and only with two states) to work with vectors of real values to realize optimization tasks. The originality of RECAA lies in adapting the dynamic of the reversible elementary cellular automata to perform exploration and exploitation actions in the optimization process. This work shows that diversity in cellular automata behaviors (in this case, reversibility) is useful to define new metaheuristics to solve optimization problems. The algorithm is compared with 15 recently published metaheuristics that recognized for their good performance, using 50 test functions in 30, 500, and with a fixed number of dimensions, and the CEC 2022 benchmark suit. Additionally, it is shown that RECAA has been applied in 3 engineering problems. In all the experiments, RECAA obtained satisfactory results. RECAA was implemented in MATLAB, and its source code can be consulted in GitHub. https://github.com/juanseck/RECAA INDEX TERMS Engineering applications, global optimization, metaheuristics, reversible cellular automata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.