The dielectric and AC conductivity of rockwool fibers-polystyrene composites were studied as a function of frequency, temperature, and rockwool concentration through impedance measurements. It was observed that the AC conductivity and the dielectric constant are increased by increasing the rockwool content in the composite. The observed electrical results fit approximately the reported empirical equations concerning the AC conductivity and dielectric behavior of polymer composites. The dielectric behavior of the prepared composites is mainly attributed to the dielectric properties of the rockwool filler. The dielectric results were explained on the basis of the interfacial (space charge) and dipolar polarizations.
Optimization of dry deposition velocity calculation has been of great interest. Every time, determining the value of the concentration boundary layer (CBL) thickness led to a waste of numerical calculation time, which appears as a huge time in large-scale climate models. The goal of this study is to optimize the numerical calculation time in the three-layer deposition model for smooth surfaces through the development of a MATLAB code that can parameterize the appropriate concentration boundary layer height (y+cbl) and internal integral calculation intervals for each particle diameter Dp (0.01–100 µm) and friction velocity u* (0.01–100 m/s). The particle concentration, as a solution to the particle flux equation, is obtained and modeled numerically by performing the left Riemann sum using MATLAB software. On the other hand, the number of subdivisions N of the Riemann sum was also parameterized for each Dp and u* in order to lessen the numerical calculation time. From a numerical point of view, the new parameterizations were tested by several computers; about 78% on the average of the computation time was saved when compared with the original algorithm. In other words, on average, about 1.2 s/calculation was gained, which is valuable in climate models simulations when millions of dry deposition calculations are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.