Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater remediation. In this study, we use a statistical and artificial intelligence method, based on principal component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2, are preferred when all physical and chemical properties investigated have low magnitudes. To conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite selection for dye-contaminated water treatment.
Water scarcity is a growing global issue, particularly in areas with limited freshwater sources, urging for sustainable water management practices to insure equitable access for all people. One way to address this problem is to implement advanced methods for treating existing contaminated water to offer more clean water. Adsorption through membranes technology is an important water treatment technique, and nanocellulose (NC)-, chitosan (CS)-, and graphene (G)- based aerogels are considered good adsorbents. To estimate the efficiency of dye removal for the mentioned aerogels, we intend to use an unsupervised machine learning approach known as “Principal Component Analysis”. PCA showed that the chitosan-based ones have the lowest regeneration efficiencies, along with a moderate number of regenerations. NC2, NC9, and G5 are preferred where there is high adsorption energy to the membrane, and high porosities could be tolerated, but this allows lower removal efficiencies of dye contaminants. NC3, NC5, NC6, and NC11 have high removal efficiencies even with low porosities and surface area. In brief, PCA presents a powerful tool to unravel the efficiency of aerogels towards dye removal. Hence, several conditions need to be considered when employing or even manufacturing the investigated aerogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.