Abstract:We report a biosensing method based on magnetic particles where coated magnetic particles are used for immunomagnetic separation, and uncoated magnetic particles are used for signal enhancement. To quantify the signal amplification, optical micrographs are analyzed to measure changes in pixel area and pixel intensity. Microcontact-printed surface receptors are arranged in alternating lines on gold chips, enabling differential calculations. In a model experiment, target molecules-streptavidin-are first captured and separated by biotin-coated magnetic particles, and then exposed to a gold surface functionalized with biotin-coupled bovine serum albumin, forming a sandwich assay. Applying a magnetic field and introducing uncoated magnetic particles resulted in accumulation around magnetic particles in the sandwich assay and enhancement of the contrast to noise ratio at least by eight-fold in a range of 0.1-100 µM.
We report a time and cost efficient signal amplification method for biosensors employing magnetic particles. In this method, magnetic particles in an applied external magnetic field form magnetic dipoles, interact with each other, and accumulate along the magnetic field lines. This magnetic interaction does not need any biomolecular coating for binding and can be controlled with the strength of the applied magnetic field. The accumulation can be used to amplify the corresponding pixel area that is obtained from an image of a single magnetic particle. An application of the method to the
Escherichia coli
0157:H7 bacteria samples is demonstrated in order to show the potential of the approach. A minimum of threefold to a maximum of 60-fold amplification is reached from a single bacteria cell under a magnetic field of 20 mT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.