Abstract.A new seismic reflection survey for imaging deeper levels of the end-glacial Pärvie fault system in northern Sweden was acquired in June 2014. The Pärvie fault system hosts the largest fault scarp so far documented in northern Scandinavia, both in terms of its length and calculated magnitude of the earthquake that generated it. Present-day microearthquakes occur along the length of the fault scarp on the eastern side of the scarp, in general agreement with an east-dipping main fault. In the central section of the fault system, where there is a number of subsidiary faults east of the main Pärvie scarp, it has been unclear how the earthquakes relate to the structures mapped at the surface. A seismic profile across the Pärvie fault system acquired in 2007, with a mechanical hammer as a source, showed a good correlation between the surface mapped faults and moderate to steeply dipping reflections. The most pronounced reflectors could be mapped to about 3 km depth. In the new seismic survey, for deeper penetration an explosive source with a maximum charge size of 8.34 kg in 20 m deep shot holes was used. Reflectors can now be traced to deeper levels with the main 65 • east-dipping fault interpreted as a weakly reflective structure. As in the previous profile, there is a strongly reflective 60 • west-dipping structure present to the east of the main fault that can now be mapped to about 8 km depth. Extrapolations of the main and subsidiary faults converge at a depth of about 11.5 km, where current earthquake activity is concentrated, suggesting their intersection has created favorable conditions for seismic stress release. Based on the present and previous seismic reflection data, we propose potential locations for future boreholes for scientific drilling into the fault system. These boreholes will provide a better understanding of the reflective nature of the fault structures and stress fields along the faults at depth.
We acquired a high-resolution 2D seismic profile to test the capability of the seismic method in imaging a sulfide ore body at Garpenberg, central Sweden. Delineation of the geologic structures, which surround and host the ore body, is another goal of the survey. Due to the 3D geology of the structures, a cross-dip correction performed to image out-of-the-plane reflections, resulting in a clear high amplitude anomaly at a time and location to that to be expected from near the top of the ore body. Furthermore, DMO processing and migration are applied to the data, providing images of four main reflection groups. The reflections have been interpreted as corresponding to geologic rock units in the area that partly interfere with the potential ore body signal. To further investigate the seismic response of the ore body, forward modeling by ray-tracing is applied using the ore body geometry as mapped by drilling. We use two ray-tracing approaches: standard 3D ray-tracing and an exploding reflector approach. Seven representative samples from the mine area are used to determine P-wave velocities. The measurements show a considerable contrast between the ore body and host rock. By comparing the modeled and observed data, we find that the high amplitude signal in the real seismic section most likely emanates from near the top of one concentrated ore which lies inside the larger mapped ore body that has been modeled as a resource. The base of the ore body is only observed on the synthetic data whereas a signal penetration analysis suggests that the seismic signal penetrated efficiently along the entire survey line. Presence of disseminated ore and lower fold toward the northern end of the profile could be combined reasons that make imaging the base of the ore body difficult.
Abstract. Fault scarps that extend up to 155 km and have offsets of tens of meters at the surface are present in the northern parts of Finland, Norway and Sweden. These fault scarps are inferred to have formed during earthquakes with magnitudes up to 8 at the time of the last deglaciation. The Pärvie fault system represents the largest earthquake so far documented in northern Scandinavia, both in terms of its length and its calculated magnitude. It is also the longest known glacially induced fault in the world. Present-day microearthquakes occur along the length of the fault scarp on the eastern side of the scarp, in general agreement with an east dipping main fault. In the central section of the fault, where there is a number of subsidiary faults east of the main fault, it has been unclear how the earthquakes relate to the faults mapped at the surface. A seismic profile across the Pärvie Fault system acquired in 2007, with a mechanical hammer as a source, showed a good correlation between the surface mapped faults and moderate to steeply dipping reflectors. The most pronounced reflector could be mapped to about 3 km depth. In an attempt to map the fault system to deeper levels, a new 22 km long 2-D seismic profile which followed the 2007 line was acquired in June 2014. For deeper penetration an explosive source with a maximum charge size of 8.34 kg in 20 m deep shot holes was used. Reflectors can now be traced to deeper levels with the main 65° east dipping fault interpreted as a weakly reflective structure. As in the previous profile, there is a pronounced strongly reflective 60° west dipping structure present to the east of the main fault that can now be mapped to about 8 km depth. Extrapolations of the main and subsidiary faults converge at a depth of about 11.5 km where current earthquake activity is concentrated, suggesting their intersection has created favorable conditions for seismic stress release. Based on the present and previous seismic reflection data, potential locations for future boreholes for drilling into the fault system are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.