Development of biologically inspired green synthesis of silver nanoparticles has attracted considerable worldwide attention in matter of medical science and disease treatment. Herein, the green synthesis of silver nanomaterials using organic green sources has been evaluated and discussed. These kinds of materials are widely used for treatment of antibiotic-resistant bacteria, cancer and etc due to their elegant properties compared with other chemical ways and drugs. Moreover, the outcome of green-based approaches were compared with chemical procedures and obtained data were examined via various analyses including UV-visible spectroscopy, scanning electron microscope (SEM), energy dispersive Xray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR). In this study, variety of green methods were investigated to present a summary of recent achievements toward highlighting biocompatible nanoparticles, all of which can reduce the toxicity of nanoparticles, make them eco-friendly, reduce their side effects and decrease the production cost. The nature of these biological organisms also affect the structure, shape, size and morphology of synthesized nanoparticles.
In this research, first graphene oxide (GO) was synthesized using modified Hummers method and thence via a multi-step procedure, surface of GO was decorated with Fe 3 O 4 nanoparticles (GO-Fe 3 O 4). Thereafter, developed nanoparticles were characterized using FTIR, XRD and SEM analyses and their magnetic properties confirmed using VSM analysis. Moreover, performance of the GO-Fe 3 O 4 for the removal and adsorption of Erythrosine dye from the aqueous solution under variable conditions including pH, phosphate buffer solution (PBS), adsorbent content, stirring time, electrolyte concentration, solution content and temperature were examined. In this regard, for obtained solutions from the chicken slaughterhouse and hospital sewage disposal system containing 20, 50 and 70 mg mL-1 Erythrosine dye, GO-Fe 3 O 4 nanoparticles adsorbed from approximately 94% to 97% of the total dye, respectively. What is more, the highest adsorption capacity was obtained at 149.25 mg/g by means of Langmuir model. The obtained results clearly showed that GO-Fe 3 O 4 nanoparticles present a fabulous performance for the absorption and removal of dyes form disposal systems.
In this study we have investigated the effect of montmorillonite with alkyl quaternary ammonium salt that had been doped into the silicon acrylate (AC-Si)/ Epoxy Cresol Novolac (ECN)/ montmorillonite nano composites on structural, mechanical and thermal properties of composite samples. Moreover the effect of increase in weight percentages of fillers at 0.01, 0.02, 0.03 and 0.04 wt% on the amount of Impact and flexural strength had been investigated. Also impact and flexural strength were performed on two different systems namely (a) ECN filled nanoclay and (b) AC-Si ECN filled with nano montmorillonite as a function of clay respectively. By increase in the weight percentage of filler in the context of matrix up to the 0.03 wt%, the amount of flexural and impact strength were increased but by adding filler more that 0.03 wt%, the amount of flexural and impact strength will decrease. The resulting nanocomposites have optimal mechanical properties at 0.03 wt% montmorillonite content. Addition of The AC-Si will increase the interlamellar distance due to better dispersion of the clay within the matrix. Cross section of fracture surfaces that had been shown by SEM micrographs, specifies that, increase in viscosity had caused due to aggregation that is the main cause of fluctuation in samples properties.
Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.