The surface tension (ST) of ionic liquids (ILs) and their accompanying mixtures allows engineers to accurately arrange new processes on the industrial scale. Without any doubt, experimental methods for the specification of the ST of every supposable IL and its mixtures with other compounds would be an arduous job. Also, experimental measurements are effortful and prohibitive; thus, a precise estimation of the property via a dependable method would be greatly desirable. For doing this task, a new modeling method according to artificial neural network (ANN) disciplined by four optimization algorithms, namely teaching-learning-based optimization (TLBO), particle swarm optimization (PSO), genetic algorithm (GA) and imperialist competitive algorithm (ICA), has been suggested to estimate ST of the binary ILs mixtures. For training and testing the applied network, a set of 748 data points of binary ST of IL systems within the temperature range of 283.1-348.15 K was utilized. Furthermore, an outlier analysis was used to discover doubtful data points. Gained values of MSE & R 2 were 0.0000007 and 0.993, 0.0000002 and 0.998, 0.0000004 and 0.996 and 0.0000006 and 0.994 for the ICA-ANN, TLBO-ANN, PSO-ANN and GA-ANN, respectively. Results demonstrated that the experimental data and predicted values of the TLBO-ANN model for such target are wholly matched.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.