Largemouth bass (Micropterus salmoides) are common hosts of an epizootic bacterial infection by Nocardia seriolae. We conducted transcriptome profiling of M. salmoides to understand the host immune response to N. seriolae infection, using the Illumina sequencing platform. De novo assembly of paired-end reads yielded 47,881 unigenes, the total length, average length, N50, and GC content of which were 49,734,288, 1038, 1983 bp, and 45.94%, respectively. Annotation was performed by comparison against non-redundant protein sequence (NR), non-redundant nucleotide (NT), Swiss-Prot, Clusters of Orthologous Groups (COG), Kyoto Encyclopaedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Interpro databases, yielding 28,964 (NR: 60.49%), 36,686 (NT: 76.62%), 24,830 (Swissprot: 51.86%), 8913 (COG: 18.61%), 20,329 (KEGG: 42.46%), 835 (GO: 1.74%), and 22,194 (Interpro: 46.35%) unigenes. Additionally, 8913 unigenes were classified into 25 Clusters of Orthologous Groups (KOGs) categories, and 20,329 unigenes were assigned to 244 specific signalling pathways. RNA-Seq by Expectation Maximization (RSEM) and PossionDis were used to determine significantly differentially expressed genes (False Discovery Rate (FDR) < 0.05) and we found that 1384 were upregulated genes and 1542 were downregulated genes, and further confirmed their regulations using reverse transcription quantitative PCR (RT-qPCR). Altogether, these results provide information on immune mechanisms induced during bacterial infection in largemouth bass, which may facilitate the prevention of nocardiosis.