This study investigates the most recent data hiding techniques based on DNA steganography, including the highly improved DNA-based steganography technique, the data hiding using double DNA sequences method, and the enhanced DNA-based steganography technique. The strengths and weaknesses of these techniques are discussed. Additionally, the security of these techniques is analyzed based on several security parameters that measure the quality of DNA steganography with respect to many factors, including, but not limited to, cracking probability, blindness, modification rate and expansion rate, and layers of security. The goal of the comparison between the investigated techniques is to highlight the advantages and disadvantages of the existing data hiding algorithms and to motivate future research in this field. Moreover, the paper evaluates the discussed techniques based on some parameters, including capacity, payload, and bit per nucleotide (bpn). The result shows that the enhanced DNA-based steganography technique hides 2 bpn, whereas the highly improved method can hide on average 1.46 bpn, which is higher than data hiding using double DNA sequences method can hide .The paper also presents suggestions for how each technique can be optimized to to achieve a higher security level for hiding data within DNA sequences.
Information security has become increasingly challenging as a result of massive advancements in information and communication technologies. Due to the necessity of exchanging private information and the open nature of the network, there is an increased risk of various types of attacks. Consequently, data security is an essential component of data communication. One of the most effective methods used to achieve secrecy is steganography. This method hides data within a cover object without raising suspicion. The level of security is improved when two steganography methods are combined. This approach is known as multilevel steganography, which hides sensitive data in two cover objects in order to provide a two-level security system. Accordingly, we developed a technique that focuses on protecting secrecy while also being robust to attacks. The new technique uses a multi-layer steganography mechanism by using DNA sequences and images as carriers for sensitive data. The technique intends to hide secret messages in the DNA using the substation algorithm, and then the fake DNA is embedded in an image utilizing the discrete cosine transform (DCT) method. Eventually, the stego image is sent to the intended recipient. Different types of images with different sizes and lengths of messages and DNA sequences were used during the experiments. The results show that the proposed mechanism is resistant to histogram and chi-square attacks. The maximum mean value observed was 0.05, which means the histograms of the original and stego images are nearly identical, and the stego image does not raise any suspicion regarding the existence of secret information. In addition, the imperceptibility ratios were good, as the highest PSNR and MSE values were 0.078 and 72.2, respectively. Finally, the PNG and BMP images show excellent results. On the other hand, the JPG images failed to meet the expected ratio of imperceptibility and security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.