Background Multi-walled carbon nanotubes can be divided into two general subtypes: tangled and straight. MWCNT-N (60 nm in diameter) and MWCNT-7 (80–90 nm in diameter) are straight-type MWCNTs, and similarly to asbestos, both are carcinogenic to the lung and pleura when administered to rats via the airway. Injection of straight-type MWCNTs into the peritoneal cavity also induces the development of mesothelioma, however, injection of tangled-type MWCNTs into the peritoneal cavity does not induce carcinogenesis. To investigate these effects in the lung we conducted a 2-year comparative study of the potential carcinogenicities of a straight-type MWCNT, MWCNT-A (approximately 150 nm in diameter), and a tangled-type MWCNT, MWCNT-B (7.4 nm in diameter) after administration into the rat lung. Crocidolite asbestos was used as the reference material, and rats administered vehicle were used as the controls. Test materials were administered by intra-Tracheal Intra-Pulmonary Spraying (TIPS) once a week over a 7 week period (8 administrations from day 1 to day 50), followed by a 2-year observation period without further treatment. Rats were administered total doses of 0.5 or 1.0 mg MWCNT-A and MWCNT-B or 1.0 mg asbestos. Results There was no difference in survival between any of the groups. The rats administered MWCNT-A or asbestos did not have a significant increase in bronchiolo-alveolar hyperplasia or tumors in the lung. However, the rats administered MWCNT-B did have significantly elevated incidences of bronchiolo-alveolar hyperplasia and tumors in the lung: the incidence of bronchiolo-alveolar hyperplasia was 0/20, 6/20, and 9/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively, and the incidence of adenoma and adenocarcinoma combined was 1/19, 5/20, and 7/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively. Malignant pleural mesothelioma was not induced in any of the groups. Conclusions The results of this initial study indicate that tangled-type MWCNT-B is carcinogenic to the rat lung when administered via the airway, and that straight-type MWCNT-A did not have higher carcinogenic potential in the rat lung than tangled-type MWCNT-B.
Background Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. Methods Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice. Results DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans. Conclusions Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be ignored.
Background Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. Methods Rats were divided into six groups: Untreated, Vehicle, 3 DWCNT groups (0.12mg/rat, 0.25mg/rat and 0.5mg/rat), and MWCNT-7 (0.5mg/rat). The test materials were administrated by intratracheal - intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice at weeks 52 and 104. Results DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. Conclusions Our results demonstrate that DWCNTs are biopersistent in the rat lung and induce chronic inflammation. Moreover, rats treated with 0.5 mg DWCNT developed pleural fibrosis. While our results do not show that DWCNT is carcinogenic in the rat lung, total tumor incidence was significantly increased in the 0.5 mg DWCNT group. Taken together, these findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and carcinogenic cannot be ignored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.