Recent research has pointed to the ubiquity and abundance of between-generation epigenetic inheritance. This research has implications for assessing disease risk and the responses to ecological stresses and also for understanding evolutionary dynamics. An important step toward a general evaluation of these implications is the identification and estimation of the amount of heritable, epigenetic variation in populations. While methods for modeling the phenotypic heritable variance contributed by culture have already been developed, there are no comparable methods for nonbehavioral epigenetic inheritance systems. By introducing a model that takes epigenetic transmissibility (the probability of transmission of ancestral phenotypes) and environmental induction into account, we provide novel expressions for covariances between relatives. We have combined a classical quantitative genetics approach with information about the number of opportunities for epigenetic reset between generations and assumptions about environmental induction to estimate the heritable epigenetic variance and epigenetic transmissibility for both asexual and sexual populations. This assists us in the identification of phenotypes and populations in which epigenetic transmission occurs and enables a preliminary quantification of their transmissibility, which could then be followed by genomewide association and QTL studies.
Models of adaptive bet-hedging commonly adopt insights from Kelly's famous work on optimal gambling strategies and the financial value of information. In particular, such models seek evolutionary solutions that maximize long term average growth rate of lineages, even in the face of highly stochastic growth trajectories. Here, we argue for extensive departures from the standard approach to better account for evolutionary contingencies. Crucially, we incorporate considerations of volatility minimization, motivated by interim extinction risk in finite populations, within a finite time horizon approach to growth maximization. We find that a game-theoretic competitive-optimality approach best captures these additional constraints, and derive the equilibria solutions under straightforward fitness payoff functions and extinction risks. We show that for both maximal growth and minimal time relative payoffs the log-optimal strategy is a unique pure-strategy symmetric equilibrium, invariant with evolutionary time horizon and robust to low extinction risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.