Significant advances are needed to optimize the charging speed, reliability, safety, and cost of today's conservatively designed electric vehicle (EV) charging systems. The design and optimization of these novel engineering systems require concurrent consideration of thermal and electrical phenomena, as well as component and system level dynamics and control to guarantee reliable continuous operation, scalability, and minimum footprint. This work addresses the concurrent thermal and electrical design constraints in a high-density, on-board, bidirectional charger with vehicle-to-grid (V2G), grid-to-vehicle (G2V), vehicle-to-house (V2H), and vehicle-to-vehicle (V2V) power transfer capabilities. The electrical design of this charger consists of DC鈥揇C and DC鈥揂C power stages connected in series. The power-stage circuits are implemented on a printed circuit board (PCB) with 16 surface-mount silicon carbide MOSFETs, three inductors, and one transformer. The main goal of this work is to investigate the interplay between the cooling architecture and the PCB layout, and the corresponding impact on the heat dissipation and parasitic inductance. This work compares the performance of three generations of this multifunctional charger that employ different design methodologies and proposes high-level design guidelines derived from multiphysics simulations and experimental tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.