Nanocrystalline silver dressings are widely known to be potent antimicrobial and anti-inflammatory agents and have long been used to treat topical wounds. Gold is known to be a strong anti-inflammatory agent and has been used in the treatment of rheumatoid arthritis for >70 years. The purpose of this work was to study the effect of incorporating gold into nanocrystalline silver dressings from antimicrobial and anti-inflammatory perspectives. Gold and silver dressing alloys were created by direct current magnetron sputtering and compared with pure silver nanocrystalline dressings using conventional biological (log reduction and corrected zone of inhibition) and physical (X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, atomic absorption spectroscopy, atomic force microscopy and scanning electron microscopy) characterisation techniques. While the gold/silver dressings were slightly weaker antimicrobials than the pure silver nanocrystalline structures, the addition of gold to the nanostructure reduces the minimum crystallite size from 17 to 4 nm. This difference increases the number of grain boundary atoms from 12% to 40% which could augment the anti-inflammatory properties of the dressings. The formation of gold oxide (Au2O3) was thought to be responsible for the observed decrease in crystallite size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.