Prevention and treatment of bacterial colonised/infected wounds are critical. Many commercially available silver dressings claim broad-spectrum bactericidal activity over days and are indicated for serious conditions including burns and ulcers. However, there is no peer-reviewed literature available for many newer dressings. This study compared the activity of some of these dressings. Six silver-containing dressings were compared using log reduction, silver release and corrected zone of inhibition assays. Only the nanocrystalline silver dressing was bactericidal against Staphylococcus aureus, and the only other dressing that produced any log reduction was a silver collagen matrix dressing. These two dressings and a silver alginate dressing produced zones of inhibition, although the collagen matrix and alginate dressings had decreasing zone sizes over time, and the latter liquefied after five transfers. The remaining dressings (two ionic silver foam dressings and a silver sulphate dressing) did not produce zones of inhibition. For the foam, alginate and collagen matrix dressings, antimicrobial activity was related to silver release. The silver sulphate dressing released large quantities of silver, but only through the dressing edges, as the wound-contacting surface appeared to be hydrophobic. The results of this study emphasise the importance of confirming product claims regarding silver dressing efficacy.
Nanocrystalline silver dressings are widely known to be potent antimicrobial and anti-inflammatory agents and have long been used to treat topical wounds. Gold is known to be a strong anti-inflammatory agent and has been used in the treatment of rheumatoid arthritis for >70 years. The purpose of this work was to study the effect of incorporating gold into nanocrystalline silver dressings from antimicrobial and anti-inflammatory perspectives. Gold and silver dressing alloys were created by direct current magnetron sputtering and compared with pure silver nanocrystalline dressings using conventional biological (log reduction and corrected zone of inhibition) and physical (X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, atomic absorption spectroscopy, atomic force microscopy and scanning electron microscopy) characterisation techniques. While the gold/silver dressings were slightly weaker antimicrobials than the pure silver nanocrystalline structures, the addition of gold to the nanostructure reduces the minimum crystallite size from 17 to 4 nm. This difference increases the number of grain boundary atoms from 12% to 40% which could augment the anti-inflammatory properties of the dressings. The formation of gold oxide (Au2O3) was thought to be responsible for the observed decrease in crystallite size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.