Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described.
BackgroundNanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity.MethodsInflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses.ResultsAnimals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis with pH 7. Solution anti-inflammatory activity did not correlate with total silver content, as pH 4 solutions contained significantly more silver than all others.ConclusionsNanocrystalline silver-derived solutions appear to have anti-inflammatory/pro-healing activity, particularly with a starting pH of 9. Solutions generated differently may have varying concentrations of different silver species, only some of which are anti-inflammatory. Nanocrystalline silver-derived solutions show promise for a variety of anti-inflammatory treatment applications.
This study examined the mechanism of nanocrystalline silver antiinflammatory activity, and tested nanocrystalline silver for systemic antiinflammatory effects. Secondary ion mass spectroscopy of skin treated directly with nanocrystalline silver for 24 hours showed that at skin surfaces there were significant deposits at weights corresponding to Ag, AgO, AgCl, AgNO(3), Ag(2)O, and silver clusters Ag(2-6), but silver penetration was minimal. To test for translocation of the effect, a porcine contact dermatitis model in which wounds were induced on one side of the back and then treated with nanocrystalline silver on the opposite side of the back was used. Visual and histological data showed improvement relative to animals treated with saline only. Significantly increased induction of apoptosis in the inflammatory cells present in the dermis was observed with remote nanocrystalline silver treatments. In addition, immunohistochemical analysis showed decreased levels of proinflammatory cytokines tumor necrosis factor-alpha and interleukin-8, and increased levels of antiinflammatory cytokine interleukin-4, epidermal growth factor, keratinocyte growth factor, and keratinocyte growth factor-2. Thus, the antiinflammatory effects of nanocrystalline silver appear to be induced by interactions with cells in the top layers of the skin, which then release biological signals resulting in widespread antiinflammatory activity.
Prevention and treatment of bacterial colonised/infected wounds are critical. Many commercially available silver dressings claim broad-spectrum bactericidal activity over days and are indicated for serious conditions including burns and ulcers. However, there is no peer-reviewed literature available for many newer dressings. This study compared the activity of some of these dressings. Six silver-containing dressings were compared using log reduction, silver release and corrected zone of inhibition assays. Only the nanocrystalline silver dressing was bactericidal against Staphylococcus aureus, and the only other dressing that produced any log reduction was a silver collagen matrix dressing. These two dressings and a silver alginate dressing produced zones of inhibition, although the collagen matrix and alginate dressings had decreasing zone sizes over time, and the latter liquefied after five transfers. The remaining dressings (two ionic silver foam dressings and a silver sulphate dressing) did not produce zones of inhibition. For the foam, alginate and collagen matrix dressings, antimicrobial activity was related to silver release. The silver sulphate dressing released large quantities of silver, but only through the dressing edges, as the wound-contacting surface appeared to be hydrophobic. The results of this study emphasise the importance of confirming product claims regarding silver dressing efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.