Generally, large-scale production of graphene is currently not commercially viable due to expensive raw materials, complexity and the high-energy consumption of the processes currently used in the production. The use of biomass precursors and energy efficient procedures for carbonization have been proposed to reduce the cost of the graphene materials. However, low-cost graphene production has not been accomplished yet. Herein, we present a sustainable procedure and renewable starting materials to synthesize carbon nanostructures with graphene-like features. First, a SiC/C composite was synthesized from phytoliths and sucrose through magnesiothermic reduction. The phytoliths were obtained from barley husk that is an abundant side stream of agricultural industry. Second, graphene-like structures were achieved by the graphitization of SiC/C composite with high temperature induction annealing at 2400°C under atmospheric pressure. The formation of graphenelike carbon was initiated by vaporization of silicon from the pre-ceramic SiC/C. Complete transformation of SiC/C to hollow, spherical graphene-like carbon structures and sheets were verified with thermogravimetry, x-ray diffraction, energy dispersive spectroscopy, electron microscopy and Raman spectroscopy. Also, the theoretical thermodynamic consideration of the phase separation of silicon carbide and the role of free carbon in the process has been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.