Autism Spectrum Disorder (ASD), according to DSM-5 in the American Psychiatric Association, is a neurodevelopmental disorder that includes deficits of social communication and social interaction with the presence of restricted and repetitive behaviors. Children with ASD have difficulties in joint attention and social reciprocity, using non-verbal and verbal behavior for communication. Due to these deficits, children with autism are often socially isolated. Researchers have emphasized the importance of early identification and early intervention to improve the level of functioning in language, communication, and well-being of children with autism. However, due to limited local assessment tools to diagnose these children, limited speech-language therapy services in rural areas, etc., these children do not get the rehabilitation they need until they get into compulsory schooling at the age of seven years old. Hence, efficient approaches towards early identification and intervention through speedy diagnostic procedures for ASD are required. In recent years, advanced technologies like machine learning have been used to analyze and investigate ASD to improve diagnostic accuracy, time, and quality without complexity. These machine learning methods include artificial neural networks, support vector machines, a priori algorithms, and decision trees, most of which have been applied to datasets connected with autism to construct predictive models. Meanwhile, the selection of features remains an essential task before developing a predictive model for ASD classification. This review mainly investigates and analyzes up-to-date studies on machine learning methods for feature selection and classification of ASD. We recommend methods to enhance machine learning’s speedy execution for processing complex data for conceptualization and implementation in ASD diagnostic research. This study can significantly benefit future research in autism using a machine learning approach for feature selection, classification, and processing imbalanced data.
Dyslexia is a neurological disorder that is characterized by imprecise comprehension of words and generally poor reading performance. It affects a significant population of school-age children, with more occurrences in males, thus, putting them at risk of poor academic performance and low selfesteem for a lifetime. The long-term hope is to have a dyslexia diagnostic method that is informed by neural-biomarkers. In this regard, large numbers of machine learning methods and, more recently, deep learning methods have been implemented across various types of dataset with the above-chance classification accuracy. However, attainment of clinical acceptability of these state-of-the-art methods is bedeviled by certain challenges including lack of biologically-interpretable biomarkers, privacy of dataset and classifiers, hyper-parameter selection/optimization, and overfitting problem among others. This review paper critically analyzes recent machine learning methods for detecting dyslexia and its biomarkers and discusses challenges that require proper attentions from the users of deep learning methods in order to enable them to attain clinically relevance and acceptable level. The review is conducted within the premise of implementation and experimental outcomes for each of the 22 selected articles using the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) protocol, with a view to outlining some critical challenges for achieving high accuracy and reliability of the state-of-the-art machine learning methods. As an evidence-based protocol for reporting in systematic reviews and meta-analyses, PRISMA helps to ensure clarity and transparency of this paper by showing a four-phase flow diagram of the selection process for articles used in this review. It is therefore envisaged that higher classification performance of clinical relevance can be achieved using deep learning models for dyslexia and its biomarkers by addressing identified potential challenges.
Artificial neural networks (ANN) perform well in real-world classification problems. In this paper, a robust classification model using ANN was constructed to enhance the accuracy of breast cancer classification. The Taguchi method was used to determine the suitable number of neurons in a single hidden layer of the ANN. The selection of a suitable number of neurons helps to solve the overfitting problem by affecting the classification performance of an ANN. With this, a robust classification model was then built for breast cancer classification. Based on the Taguchi method results, the suitable number of neurons selected for the hidden layer in this study is 15, which was used for the training of the proposed ANN model. The developed model was benchmarked upon the Wisconsin Diagnostic Breast Cancer Dataset, popularly known as the UCI dataset. Finally, the proposed model was compared with seven other existing classification models, and it was confirmed that the model in this study had the best accuracy at breast cancer classification, at 98.8%. This confirmed that the proposed model significantly improved performance.
Achieving biologically interpretable neural-biomarkers and features from neuroimaging datasets is a challenging task in an MRI-based dyslexia study. This challenge becomes more pronounced when the needed MRI datasets are collected from multiple heterogeneous sources with inconsistent scanner settings. This study presents a method of improving the biological interpretation of dyslexia’s neural-biomarkers from MRI datasets sourced from publicly available open databases. The proposed system utilized a modified histogram normalization (MHN) method to improve dyslexia neural-biomarker interpretations by mapping the pixels’ intensities of low-quality input neuroimages to range between the low-intensity region of interest (ROIlow) and high-intensity region of interest (ROIhigh) of the high-quality image. This was achieved after initial image smoothing using the Gaussian filter method with an isotropic kernel of size 4mm. The performance of the proposed smoothing and normalization methods was evaluated based on three image post-processing experiments: ROI segmentation, gray matter (GM) tissues volume estimations, and deep learning (DL) classifications using Computational Anatomy Toolbox (CAT12) and pre-trained models in a MATLAB working environment. The three experiments were preceded by some pre-processing tasks such as image resizing, labelling, patching, and non-rigid registration. Our results showed that the best smoothing was achieved at a scale value, σ = 1.25 with a 0.9% increment in the peak-signal-to-noise ratio (PSNR). Results from the three image post-processing experiments confirmed the efficacy of the proposed methods. Evidence emanating from our analysis showed that using the proposed MHN and Gaussian smoothing methods can improve comparability of image features and neural-biomarkers of dyslexia with a statistically significantly high disc similarity coefficient (DSC) index, low mean square error (MSE), and improved tissue volume estimations. After 10 repeated 10-fold cross-validation, the highest accuracy achieved by DL models is 94.7% at a 95% confidence interval (CI) level. Finally, our finding confirmed that the proposed MHN method significantly outperformed the normalization method of the state-of-the-art histogram matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.