SUMMARY
Dynamic movement primitives (DMP) are motion building blocks suitable for real-world tasks. We suggest a methodology for learning the manifold of task and DMP parameters, which facilitates runtime adaptation to changes in task requirements while ensuring predictable and robust performance. For efficient learning, the parameter space is analyzed using principal component analysis and locally linear embedding. Two manifold learning methods: kernel estimation and deep neural networks, are investigated for a ball throwing task in simulation and in a physical environment. Low runtime estimation errors are obtained for both learning methods, with an advantage to kernel estimation when data sets are small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.