ABSTRACT:An N-terminal domain histidine [corresponding to position 39 of UDP-glucuronosyltransferase (UGT) 1A1] is conserved in all UGT1A and UGT2B subfamily proteins except UGT1A4 (Pro-40) and UGT2B10 (Leu-34). Unlike most UGT1A and UGT2B xenobioticmetabolizing enzymes, UGT1A4 and UGT2B10 lack the ability to glucuronidate 4-methylumbelliferone (4MU) and 1-naphthol (1NP), both planar phenols, and naproxen (a carboxylic acid). However, only UGT1A4 glucuronidates the tertiary amines lamotrigine (LTG) and trifluoperazine (TFP). In this study, we sought to elucidate the influence of specific N-terminal histidine and proline residues on UGT enzyme substrate selectivity. The conserved N-terminal domain histidine of UGT1A1, UGT1A6, UGT1A9, and UGT2B7 was mutated to proline and leucine 34 of UGT2B10 was substituted with histidine, and the capacity of the wild-type and mutant proteins to glucuronidate 4MU, 1NP, LTG, TFP, and naproxen was character- UDP-glucuronosyltransferase (UGT) enzymes catalyze the covalent linkage of glucuronic acid, donated by the cofactor UDP-glucuronic acid (UDPGA), to a typically hydrophobic substrate bearing a suitable functional group according to a second-order nucleophilic substitution mechanism. Hydroxyl (aliphatic and aromatic), carboxylic acid, and amine (primary, secondary, and tertiary) functional groups most commonly serve as the nucleophilic "acceptor" for glucuronic acid (Miners and Mackenzie, 1991;Radominska-Pandya et al., 1999). Because a myriad of compounds fulfill these minimal requirements for metabolism by UGT, glucuronidation provides an elimination and detoxification pathway for many drugs, nondrug xenobiotics, and endogenous compounds. Nineteen functional human UGT proteins have been identified to date, and these have been classified in two families (1 and 2) and three subfamilies (UGT1A, UGT2A, and UGT2B) based on sequence identity . The individual UGT enzymes exhibit distinct, but overlapping, substrate and inhibitor selectivities (Radominska-Pandya et al
1. Methods for the co-expression in Escherichia coli of human cytochrome P450 (CYP) 2C8 and CYP2C9 with NADPH-cytochrome P450 reductase (OxR) to produce a catalytically active system were compared. 2. Approaches assessed were expression of a CYP:OxR fusion construct, bicistronic plasmids, simultaneous transformation with CYP and OxR plasmids, and separate expression of CYP and OxR with reconstitution of activity by mixing the bacterial membranes. Two N-terminal modifications (Delta3-20 and 17alpha-leader) of the individual P450s were additionally investigated. 3. Each approach gave efficient expression of CYP2C8 and CYP2C9, but the bicistronic constructs under the expression conditions used gave low OxR expression and low catalytic activity. CYP expression was higher with the Delta3-20 construct for CYP2C9 and with the 17alpha-presequence construct for CYP2C8. 4. Using torsemide as substrate, all methods gave catalytically active systems with K(m) values similar to human liver microsomes. Mixing bacterial membranes containing separately expressed CYP and OxR reconstituted a catalytically active system with the Delta3-20 construct for CYP2C9 but not for CYP2C8, and with neither of the 17alpha- presequence constructs. OxR co-expressed with CYP in the same membrane interacted with CYP to reconstitute activity more effectively than addition of exogenous OxR membranes. 5. Expression construct and OxR co-expression strategy should be individualized for CYP isoforms.
Selected active site residues in substrate recognition sites (SRS) 1 and 5 of cytochrome P450 2C8 (CYP2C8) were mutated to the corresponding amino acids present in CYP2C9 to investigate the contribution of these positions to the unique substrate selectivity and regioselectivity of CYP2C8. The effects of mutations, singly and in combination, were assessed from changes in the kinetics of paclitaxel 6alpha-hydroxylation, a CYP2C8-specific pathway, and the tolylmethyl and ring hydroxylations of torsemide, a mixed CYP2C9/CYP2C8 substrate. Within SRS1, the single mutation S114F abolished paclitaxel 6alpha-hydroxylation, while the I113V substitution resulted in modest parallel reductions in K(m) and V(max). Mutations in SRS5 (viz., V362L, G365S, and V366L) reduced paclitaxel intrinsic clearance (V(max)/K(m)) by 88-100%. Torsemide is preferentially metabolized by CYP2C9, and it was anticipated that the mutations in CYP2C8 might increase activity. However, methyl and ring hydroxylation intrinsic clearances were either unchanged or decreased by the mutations, although hydroxylation regioselectivity was often altered relative to wild-type CYP2C8. The mutations significantly increased (28-968%) K(m) values for both torsemide methyl and ring hydroxylation but had variable effects on V(max). The effects of the combined mutations in SRS1, SRS5, and SRS1 plus SRS5 were generally consistent with the changes produced by the separate mutations. Mutation of CYP2C8 at position 359 (S359I), a site of genetic polymorphism in CYP2C9, resulted in relatively minor changes in paclitaxel- and torsemide-hydroxylase activities. The results are consistent with multiple substrate binding orientations within the CYP2C8 active site and a differential contribution of active site residues to paclitaxel and torsemide binding and turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.