The motifs on the center of Sukhothai ceramics are essential elements for determining the age of the ceramics. Sukhothai ceramics in each kiln were made with different pattern production techniques, and thus one specific pattern appears only in a particular kiln. Thus, archaeologists can determine which ceramic was produced from which particular kiln site by investigating its motif. Motif identification requires a well-experienced expert to identify the tracery of the pattern on the center of a ceramic. Thus, identifying such archaeological evidence is complex even for general archaeologists. The aim of this research was to study the use of deep convolutional neural networks for classifying seven motif patterns on the center of Sukhothai ceramics (i.e. Chrysanthemum bouquet, Classic scroll, Conch shell, Fish pattern, Flower head pattern, Printed Chrysanthemum head, and Tibetan Buddhist vajra ). We collected a new dataset, including 557 images of ceramics, from two kiln sites. Each ceramic’s motif was labeled by Thai ceramic experts. The collection of the motifs on the center of the Sukhothai ceramic dataset was called CMC Sukhothai Ceramic Dataset. The efficiency of the motif identification on the center of Sukhothai ceramics was evaluated by comparing five pretrained convolutional neural network models: DenseNet121, InceptionV3, VGG16, GoogLeNet, and AlexNet. Then, the models that were efficient for our dataset were selected and trained by fine tuning. Results showed that the motif recognition of VGG16 + our classification layers generated the best efficiency at 500 epochs of training and 86.54% of accuracy in the test dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.