Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a serious infectious disease with diverse clinical manifestations. The morbidity and mortality of melioidosis is high in Southeast Asia and no licensed vaccines currently exist. This study was aimed at evaluating human cellular and humoral immune responses in Thai adults against four melioidosis vaccine candidate antigens. Blood samples from 91 melioidosis patients and 100 healthy donors from northeast Thailand were examined for immune responses against B. pseudomallei Hcp1, AhpC, TssM and LolC using a variety of cellular and humoral immune assays including IFN-γ ELISpot assays, flow cytometry and ELISA. PHA and a CPI peptide pool were also used as control stimuli in the ELISpot assays. Hcp1 and TssM stimulated strong IFN-γ secreting T cell responses in acute melioidosis patients which correlated with survival. High IFN-γ secreting CD4+ T cell responses were observed during acute melioidosis. Interestingly, while T cell responses of melioidosis patients against the CPI peptide pool were low at the time of enrollment, the levels increased to the same as in healthy donors by day 28. Although high IgG levels against Hcp1 and AhpC were detected in acute melioidosis patients, no significant differences between survivors and non-survivors were observed. Collectively, these studies help to further our understanding of immunity against disease following natural exposure of humans to B. pseudomallei as well as provide important insights for the selection of candidate antigens for use in the development of safe and effective melioidosis subunit vaccines.
We confirm that the universal presence of CagA and VacA in H. pylori-infected patients in Thailand is independent of the gastroduodenal disease. The presence or absence of antibodies to H. pylori-specific antigens may be useful as indirect markers in the screening of H. pylori-infected patients, and may have specific protection roles in H. pylori-related gastroduodenal diseases.
Melioidosis is a tropical infectious disease caused by Burkholderia pseudomallei . Melioidosis is associated with diverse clinical manifestations and high mortality.
Melioidosis is a life-threatening disease in humans caused by the Gram- negative bacterium Burkholderia pseudomallei. As severe septicemic melioidosis can lead to death within 24 to 48 hours, a rapid diagnosis of melioidosis is critical for ensuring an optimal antibiotic course is prescribed to patients. Here, we report the development and evaluation of a bacteriophage tail fiber-based latex agglutination assay for rapid detection of B. pseudomallei infection. Burkholderia phage E094 was isolated from rice paddy fields in northeast Thailand, and whole genome sequenced to identify its tail fiber (94TF). The 94TF complex was structurally characterized, which involved identification of a tail assembly protein that forms an essential component of the mature fiber. Recombinant 94TF was conjugated to latex beads and developed into an agglutination-based assay (94TF-LAA). 94TF-LAA was initially tested against a large library of Burkholderia and other bacterial strains before a field evaluation was performed during routine clinical testing. The sensitivity and specificity of the 94TF-LAA were assessed alongside standard biochemical analyses on 300 patient specimens collected from an endemic area of melioidosis over 11 months. The 94TF-LAA took less than 5 minutes to produce positive agglutination, demonstrating 98% (95% CI; 94.2%−99.59%) sensitivity and 83% (95% CI; 75.64%−88.35%) specificity when compared to biochemical-based detection. Overall, we show how a Burkholderia-specific phage tail fiber can be exploited for rapid detection of B. pseudomallei. The 94TF-LAA has the potential for further development as a supplementary diagnostic to assist in clinical identification of this life-threatening pathogen. IMPORTANCE Rapid diagnosis of melioidosis is essential for ensuring optimal antibiotic courses are prescribed to patients, and thus warrants the development of cost-effective and easy-to-use tests for implementation in under-resourced areas such as Northeast Thailand and other tropical regions. Phage tail fibers are an interesting alternative to antibodies for use in various diagnostic assays for different pathogenic bacteria. As exposed appendages of phages, tail fibers are physically robust, easy to manufacture, and critically many tail fibers (such as 94TF investigated here) can target a given bacterial species with remarkable specificity. Here, we demonstrate the effectiveness of a latex agglutination assay using a Burkholderia-specific tail fiber 94TF against biochemical-based detection methods that are the standard diagnostic in many endemic areas of meilodosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.