The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A β2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.
Biomimetic analogs 1 of the microbial siderophore (iron carrier) ferrichrome were labeled with a fluorescent marker at a site which does not interfere with iron binding or receptor recognition to provide iron(III) carriers 5 and 10 (Figure ). These carriers were built from a tetrahedral carbon as an anchor which was symmetrically extended by three converging iron-binding chains and a single, exogenous anthracenyl residue. Carriers 5 varied in the nature of the amino acids (G = glycyl, A = alanyl and L = leucyl) linking the anchor with the iron-binding hydroxamate groups, while the alanyl derivative 10A differed from 5A in the spacer between the anthracenyl label and the anchor. Examination of these binders by 1H NMR confirmed that their conformations were analogous to those of the nonlabeled parent compounds. Titration experiments using UV/vis and fluorescence spectroscopy demonstrated the quenching of these compounds' fluorescence upon iron(III) loading and its recovery upon iron(III)'s release to a competing chelator. The quenching process fits the Perrin model for static quenching and was more efficient in derivatives 5, where the label could approach the iron-binding domain, than in derivative 10A, where the label's approach was prohibited. These data are in compliance with an intramolecular quenching process. In vivo examination of the labeled derivatives 5 with Pseudomonas putida as the indicator organism established that their behavior parallels that of the nonlabeled analogs 1, with the added benefit of signaling microbial activity by fluorescence emission. Thus incubation of P. putida with iron(III)-loaded (and therefore nonfluorescent) 5G caused buildup of the label's fluorescence in the culture medium. These observations provide direct evidence for a shuttle-mechanism of iron delivery where the fluorescent, iron-unloaded carrier is released to the medium. Inhibition of both phenomena by natural ferrichrome or NaN3 demonstrates the involvement of the microbial ferrichrome receptor and transport systems, respectively. On the other hand, 5A induced only modest iron(III) uptake by P. putida and failed to generate fluorescence in the culture medium, concurring with its action as an inhibitor. The fact that two strains of different Pseudomonas species did not respond to the ferrichrome analog 5G illustrates the specificity of these compounds. The performance of these carriers as structural and functional probes, paired with their high species specificity, encourage their consideration as diagnostic tools for the detection and identification of pathogenic bacteria and fungi.
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein α-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin–mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin–carbohydrate bond.
Synthetic carbohydrate and glycoprotein mimics displaying sulfated saccharide residues have been assayed for their L-selectin inhibitory properties under static and flow conditions. Polymers displaying the L-selectin recognition epitopes 3,6-disulfo Lewis x(Glc) (3-O-SO 3 -Gal1␣4(Fuc␣1␣3)-6-O-SO 3 -Glc-OR) and 3,6-disulfo Lewis x(Glc) (3,6-di-O-SO 3 -Gal1␣4(Fuc␣1␣3)Glc-OR) both inhibit L-selectin binding to heparin under static, cell-free binding conditions with similar efficacies. Under conditions of shear flow, however, only the polymer displaying 3,6-disulfo Lewis x(Glc) inhibits the rolling of L-selectin-transfected cells on the glycoprotein ligand GlyCAM-1. Although it has been shown to more effective than sialyl Lewis x at blocking the L-selectin-GlyCAM-1 interaction in static binding studies, the corresponding monomer had no effect in the dynamic assay. These data indicate that multivalent ligands are far more effective inhibitors of L-selectin-mediated rolling than their monovalent counterparts and that the inhibitory activities are dependent on the specific sulfation pattern of the recognition epitope. Importantly, our results indicate the L-selectin specificity for one ligand over another found in static, cell-free binding assays is not necessarily retained under the conditions of shear flow. The results suggest that monovalent or polyvalent carbohydrate or glycoprotein mimetics that inhibit selectin binding in static assays may not block the more physiologically relevant process of selectin-mediated rolling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.