A commonly employed abstraction for studying the object placement problem for the purpose of Internet content distribution is that of a distributed replication group. In this work the initial model of distributed replication group of Leff, Wolf, and Yu (IEEE TPDS '93) is extended to the case that individual nodes act selfishly, i.e., cater to the optimization of their individual local utilities. Our main contribution is the derivation of equilibrium object placement strategies that: (a) can guarantee improved local utilities for all nodes concurrently as compared to the corresponding local utilities under greedy local object placement; (b) do not suffer from potential mistreatment problems, inherent to centralized strategies that aim at optimizing the social utility; (c) do not require the existence of complete information at all nodes. We develop a baseline computationally efficient algorithm for obtaining the aforementioned equilibrium strategies and then extend it to improve its performance with respect to fairness. Both algorithms are realizable in practice through a distributed protocol that requires only limited exchange of information.
We study two standard multi-unit auction formats for allocating multiple units of a single good to multi-demand bidders. The first one is the Discriminatory Auction, which charges every winner his winning bids. The second is the Uniform Price Auction, which determines a uniform price to be paid per unit. Variants of both formats find applications ranging from the allocation of state bonds to investors, to online sales over the internet, facilitated by popular online brokers.For these formats, we consider two bidding interfaces: (i) standard bidding, which is most prevalent in the scientific literature, and (ii) uniform bidding, which is more popular in practice. In this work, we evaluate the economic inefficiency of both multi-unit auction formats for both bidding interfaces, by means of upper and lower bounds on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash equilibria. Our developments improve significantly upon bounds that have been obtained recently in [Markakis, Telelis, ToCS 2014] and [Syrgkanis, Tardos, STOC 2013] for submodular valuation functions. Moreover, we consider for the first time bidders with subadditive valuation functions for these auction formats. Our results signify that these auctions are nearly efficient, which provides further justification for their use in practice.
Abstract. We study distributed content replication networks formed voluntarily by selfish autonomous users, seeking access to information objects that originate from distant servers. Each user caters to minimization of its individual access cost by replicating locally (up to constrained storage capacity) a subset of objects, and accessing the rest from the nearest possible location. We show existence of stable networks by proving existence of pure strategy Nash equilibria for a game-theoretic formulation of this situation. Social (overall) cost of stable networks is measured by the average or by the maximum access cost experienced by any user. We study socially most and least expensive stable networks by means of tight bounds on the ratios of the Price of Anarchy and Stability respectively. Although in the worst case the ratios may coincide, we identify cases where they differ significantly. We comment on simulations exhibiting occurence of cost-efficient stable networks on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.