It has been proposed that susceptibility to clefting in South America is related to Amerindian ancestry, where clefting is present at a higher frequency than in the other admixed populations (Caucasian and African) that make up the diverse racial mix of current South Americans. To clarify the genetic origins and establish a method for genetic mapping, mitochondrial DNA variation and Y-chromosome markers were studied in a South American population affected with clefting. Two-hundred and seventeen subjects and matched controls were selected through the Latin-American Collaborative Study of Congenital Malformations (ECLAMC). The case group showed a higher frequency of Native American haplogroups and a lower frequency of African haplogroups (p < 0.00001). In addition, the case group showed a much higher frequency of the specific native American haplogroup D than the control group (p < 0.00001). For the Y-chromosome markers, the case group showed a lower frequency of the African-specific marker, YAP (p = 0.002), and a higher frequency of the Native American-specific marker, DYS199 (p < 0.00001). Even though differences were found in the frequencies of the markers studied, the contribution of each founder population was similar for both groups. Results suggest a strong Native American maternal contribution and a strong Caucasian (Spanish and Portuguese) paternal contribution to the population studied. The implications of this finding include the possibility of using admixture mapping approaches to this population.
Phenotypic heterogeneity is a hallmark of complex traits, and genetic studies of such traits may focus on them as a single diagnostic entity or by analyzing specific components. For example, in orofacial clefting (OFC), three subtypes -cleft lip (CL), cleft lip and palate (CLP), and cleft palate (CP) have been studied separately and in combination. To further dissect the genetic architecture of OFCs and how a given associated locus may be contributing to distinct subtypes of a trait we developed a framework for quantifying and interpreting evidence of subtype-specific or shared genetic effects in complex traits. We applied this technique to create a "cleft map" of the association of 30 genetic loci with three OFC subtypes. In addition to new associations, we found loci with subtype-specific effects (e.g., GRHL3 (CP), WNT5A (CLP)), as well as loci associated with two or all three subtypes. We crossreferenced these results with mouse craniofacial gene expression datasets, which identified additional promising candidate genes. However, we found no strong correlation between OFC subtypes and expression patterns. In aggregate, the cleft map revealed that neither subtype-specific nor shared genetic effects operate in isolation in OFC architecture. Our approach can be easily applied to any complex trait with distinct phenotypic subgroups.
Pectoralis major muscle defect (PMD) was diagnosed in 27 infants from a series of 599,109 live births in South America (1/22,189). In all 27 cases the PMD was unilateral, mainly affecting the right side (20/27), and there were more male (19/27) than female cases. No familial cases and no parental consanguinity were recorded. A positive correlation was observed between PMD and sex hormone intake and vaginal bleeding in the first trimester of pregnancy. In 12 (1/49,925) of the 27 PMD cases hypoplasia and/or syndactyly of the ipsilateral hand was also diagnosed. The index-middle interdigital space was affected in all 11 cases with symbrachydactyly. Additional congenital anomalies were observed in 4/27 cases, and they were: hemangiomas, hypospadias, and clubfeet. Poland complex (12 cases), isolated PMD (15 cases), and isolated symbrachydactyly (18 cases), showed a similar pattern for symmetry, sidedness, syndactyly type, and sex ratio.
To have defined a genetic model for non-syndromic cleft palate and provided evidence for a single major locus inheritance suggests that genetic linkage studies could be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.