Reputation is an important social construct in science, which enables informed quality assessments of both publications and careers of scientists in the absence of complete systemic information. However, the relation between reputation and career growth of an individual remains poorly understood, despite recent proliferation of quantitative research evaluation methods. Here, we develop an original framework for measuring how a publication's citation rate Δc depends on the reputation of its central author i, in addition to its net citation count c. To estimate the strength of the reputation effect, we perform a longitudinal analysis on the careers of 450 highly cited scientists, using the total citations C i of each scientist as his/her reputation measure. We find a citation crossover c × , which distinguishes the strength of the reputation effect. For publications with c < c × , the author's reputation is found to dominate the annual citation rate. Hence, a new publication may gain a significant early advantage corresponding to roughly a 66% increase in the citation rate for each tenfold increase in C i . However, the reputation effect becomes negligible for highly cited publications meaning that, for c ≥ c × , the citation rate measures scientific impact more transparently. In addition, we have developed a stochastic reputation model, which is found to reproduce numerous statistical observations for real careers, thus providing insight into the microscopic mechanisms underlying cumulative advantage in science.computational sociology | science of science | networks of networks | Matthew effect | sociophysics C itation counts are widely used to judge the impact of both scientists and their publications (1-4). Although it is recognized that many factors outside the pure merit of the research or the authors influence such counts, little effort has been devoted to identifying and quantifying the role of the author-specific factors. Recent investigations have begun to study the impact the individual scientists have through collaboration and reputation spillovers (5, 6), two integrative features of scientific careers that contribute to cumulative advantage (7-9). However, the majority of citation models avoid author-specific effects, mainly due to the difficulty in acquiring comprehensive disambiguated career data (10-13). As the measures are becoming increasingly common in evaluation scenarios throughout science, it is crucial to better understand what the citation measures actually represent in the context of scientists' careers. Moreover, how does reputation affect a scientist's access to key resources, the incentives to publish quality over quantity, and other key decisions along the career path (14-18)? In addition, what role does reputation play in the mentor-matching process within academic institutions, in the effectiveness of single/double blinding in peer review, and in the reward system of science (14,15,19)?It is against this background that we have developed a quantitative framework with the goal of isola...
Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions.
a b s t r a c tRecent studies on the geography of knowledge networks have documented a negative impact of physical distance and institutional borders upon research and development (R&D) collaborations. Though it is widely recognized that geographic constraints and national borders impede the diffusion of knowledge, less attention has been devoted to the temporal evolution of these constraints. In this study we use data on patents filed with the European Patent Office (EPO) for OECD countries to analyze the impact of physical distance and country borders on inter-regional links in four different networks over the period 1988-2009: (1) co-inventorship, (2) patent citations, (3) inventor mobility and (4) the location of R&D laboratories. We find the constraint imposed by country borders and distance decreased until mid1990s then started to grow, particularly for distance. The intensity of European cross-country inventor collaborations increased at a higher pace than their non-European counterparts until 2004, with no significant relative progress thereafter. For geographical networks of mobility, R&D activities and patent citations we cannot detect any substantial progress in European research integration above and beyond the common global trend.
An integrated European Research Area (ERA) is a critical component for a more competitive and open European R&D system. However, the impact of EU-specific integration policies aimed at overcoming innovation barriers associated with national borders is not well understood. Here we analyze 2.4 x 10^6 patent applications filed with the European Patent Office (EPO) over the 25-year period 1986-2010 along with a sample of 2.6 x 10^5 records from the ISI Web of Science to quantitatively measure the role of borders in international R&D collaboration and mobility. From these data we construct five different networks for each year analyzed: (i) the patent co-inventor network, (ii) the publication co-author network, (iii) the co-applicant patent network, (iv) the patent citation network, and (v) the patent mobility network. We use methods from network science and econometrics to perform a comparative analysis across time and between EU and non-EU countries to determine the "treatment effect" resulting from EU integration policies. Using non-EU countries as a control set, we provide quantitative evidence that, despite decades of efforts to build a European Research Area, there has been little integration above global trends in patenting and publication. This analysis provides concrete evidence that Europe remains a collection of national innovation systems.Comment: 24 pages, 4 figures, 2 table
We present a novel algorithm and validation method for disambiguating author names in very large bibliographic data sets and apply it to the full Web of Science (WoS) citation index. Our algorithm relies only upon the author and citation graphs available for the whole period covered by the WoS. A pair-wise publication similarity metric, which is based on common co-authors, self-citations, shared references and citations, is established to perform a two-step agglomerative clustering that first connects individual papers and then merges similar clusters. This parameterized model is optimized using an h-index based recall measure, favoring the correct assignment of well-cited publications, and a name-initials-based precision using WoS metadata and cross-referenced Google Scholar profiles. Despite the use of limited metadata, we reach a recall of 87% and a precision of 88% with a preference for researchers with high h-index values. 47 million articles of WoS can be disambiguated on a single machine in less than a day. We develop an h-index distribution model, confirming that the prediction is in excellent agreement with the empirical data, and yielding insight into the utility of the h-index in real academic ranking scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.