Simple SummaryUsing an adaptation of the domain-based welfare assessment model, a panel of horse welfare professionals (with professional expertise in psychology, equitation science, veterinary science, education, welfare, equestrian coaching, advocacy, and community engagement) assessed the perceived harms, if any, resulting from 116 interventions that are commonly applied to horses. Scores for Domain 5 (the integrated mental impact) gathered after extensive discussion during a four-day workshop aligned well with overall impact scores assigned by the same panellists individually before the workshop, although some rankings changed after workshop participation. Domain 4 (Behaviour) had the strongest association with Domain 5, whilst Domain 1 (Nutrition) had the weakest association with Domain 5, implying that the panellists considered commonly applied nutritional interventions to have less of a bearing on subjective mental state than commonly applied behavioural restrictions. The workshop defined each intervention, and stated assumptions around each, resulting in a set of exemplar procedures that could be used in future equine welfare assessments.AbstractThe aim of this study was to conduct a series of paper-based exercises in order to assess the negative (adverse) welfare impacts, if any, of common interventions on domestic horses across a broad range of different contexts of equine care and training. An international panel (with professional expertise in psychology, equitation science, veterinary science, education, welfare, equestrian coaching, advocacy, and community engagement; n = 16) met over a four-day period to define and assess these interventions, using an adaptation of the domain-based assessment model. The interventions were considered within 14 contexts: C1 Weaning; C2 Diet; C3 Housing; C4 Foundation training; C5 Ill-health and veterinary interventions (chiefly medical); C6 Ill-health and veterinary interventions (chiefly surgical); C7 Elective procedures; C8 Care procedures; C9 Restraint for management procedures; C10 Road transport; C11 Activity—competition; C12 Activity—work; C13 Activity—breeding females; and C14 Activity—breeding males. Scores on a 1–10 scale for Domain 5 (the mental domain) gathered during the workshop were compared with overall impact scores on a 1–10 scale assigned by the same panellists individually before the workshop. The most severe (median and interquartile range, IQR) impacts within each context were identified during the workshop as: C1 abrupt, individual weaning (10 IQR 1); C2 feeding 100% low-energy concentrate (8 IQR 2.5); C3 indoor tie stalls with no social contact (9 IQR 1.5); C4 both (i) dropping horse with ropes (9 IQR 0.5) and forced flexion (9 IQR 0.5); C5 long-term curative medical treatments (8 IQR 3); C6 major deep intracavity surgery (8.5 IQR 1); C7 castration without veterinary supervision (10 IQR 1); C8 both (i) tongue ties (8 IQR 2.5) and (ii) restrictive nosebands (8 IQR 2.5); C9 ear twitch (8 IQR 1); C10 both (i) individual transport (7.00 IQR 1.5) an...
Nosebands are used by riders to prevent the horse from opening its mouth, to increase control and, in some cases, to comply with the competition rules. While equestrian texts traditionally recommend that two adult human fingers should be able to fit under a fastened noseband, noseband tightness levels are not, in general, regulated in competition. Possible detrimental consequences for the horse, of excessively tight nosebands, include discomfort, pain or tissue damage. The current study investigated noseband usage in equestrian competition. Data regarding noseband type, position, width and tightness were collected from 750 horses in eventing (n = 354), dressage (n = 334) and performance hunter (n = 62) competitions in Ireland, England and Belgium. Data were collected immediately before or after the performance. Using the ISES taper gauge as a guide, results were classified according to the number of ‘fingers’ that could fit under the noseband at the nasal planum, and assigned to six groups: greater than 2 fingers; 2 fingers; 1.5 fingers; 1 finger; 0.5 fingers; zero fingers. A calliper was used to measure noseband width and position relative to the facial crest. The data were not normally distributed so Kruskall-Wallis and Mann-Whitney tests were used. In all, 44% of horses fell into the zero fingers classification while only 7% were in the two fingers classification. Significant differences emerged between disciplines (p<0.001), with the highest levels of noseband tightness measured among eventers followed by dressage horses with lowest levels among performance hunters. Noseband tightness did not differ significantly with horse age (p>0.05), which ranged from 4 to 19 years. The flash noseband was the most commonly used noseband (n = 326) and was significantly tighter than the cavesson (p < 0.001), drop noseband (p < 0.001) and the Micklem (p < 0.005). Noseband width ranged from 10 to 50 mm. Noseband position varied widely with the distance between the facial crest and upper noseband margin ranging from 0 to 70 mm. The high proportion of very tight nosebands found in this study raises concerns regarding the short and long term behavioural and physiological consequences of such tight nosebands are for the horse. Although these data are currently lacking, the findings are of concern.
The work of veterinarians when handling horses exposes them to high risk of injury. Among equine practitioners, the incidences of work-related injuries and work days lost due to injury are high. Equine veterinary practitioners" knowledge of learning theory and equitation science is minimal. Increasingly veterinarians are expected to provide a leadership role in animal welfare, including behaviour medicine. However, due to deficiencies in veterinary training, which traditionally focuses on physical aspects of health, veterinarians may be under equipped to deal effectively with all aspects of animal behaviour. Advancing veterinarians" understanding of the application of learning principles for horses would improve safety, increase ease of handling and restraint during clinical procedures and increase clinical efficacy. As the risk of injury declines, so too would the risk of litigation. Through example, veterinarians are ideally placed to influence and educate equestrian personnel in best practice handling and restraint methods. Training methods that do not align with the horse"s natural learning abilities reduce the likelihood of optimal performance and increase the frequency of problem behaviours as well as jeopardising equine welfare. Detection of inappropriate training practices is an essential part of the veterinarian"s role in identifying and addressing causes of sub-optimal performance in the equine athlete. Poor performance and problem behaviours that result from the use of inappropriate training practices may contribute significantly to the current levels of wastage in the horse industry. Education of veterinarians in equitation science could play a pivotal role in reducing wastage and improving horse welfare globally.
Noseband tightness is difficult to assess in horses participating in equestrian sports such as dressage, show jumping and three-day-eventing. There is growing concern that nosebands are commonly tightened to such an extent as to restrict normal equine behaviour and possibly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple model of the equine nose-noseband interface environment was developed in order to guide further studies in this area. The normal force component of the noseband tensile force was identified as the key contributor to sub-noseband tissue compression. The model was used to inform the design of a digital tightness gauge which could reliably measure the normal force component of the noseband tensile force. A digital tightness gauge was developed to measure this parameter under nosebands fitted to bridled horses. Results are presented for field tests using two prototype designs. Prototype version three was used in field trial 1 (n = 15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12, frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness settings in each trial as judged by a single rater using an International Society for Equitation Science (ISES) taper gauge. Normal forces in the range 7–95 N were recorded at the frontal nasal plane while a lower range 1–28 N was found at the lateral site for the taper gauge range used in the trials. The digital tightness gauge was found to be simple to use, reliable, and safe and its use did not agitate the animals in any discernable way. A simple six point tightness scale is suggested to aid regulation implementation and the control of noseband tightness using normal force measurement as the objective tightness discriminant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.