A universal algorithm to construct N -particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the so(2, 1) algebra and the oscillator algebra h 4 are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the (1 + 1) Poincaré algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.