PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ∼1.6−2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
We present the baseline conceptual design of the Cassegrain U-Band Efficient Spectrograph (CUBES) for the Very Large Telescope. CUBES will provide unprecedented sensitivity for spectroscopy on a 8 – 10 m class telescope in the ground ultraviolet (UV), spanning a bandwidth of ≥ 100 nm that starts at 300 nm, the shortest wavelength accessible from the ground. The design has been optimized for end-to-end efficiency and provides a spectral resolving power of R≥ 20000, that will unlock a broad range of new topics across solar system, Galactic and extraglactic astronomy. The design also features a second, lower-resolution (R$$\sim$$ ∼ 7000) mode and has the option of a fiberlink to the UVES instrument for simultaneous observations at longer wavelengths.Here we present the optical, mechanical and software design of the various subsystems of the instrument after the Phase A study of the project. We discuss the expected performances for the layout choices and highlight some of the performance trade-offs considered to best meet the instrument top-level requirements. We also introduce the model-based system engineering approach used to organize and manage the project activities and interfaces, in the context that it is increasingly necessary to integrate such tools in the development of complex astronomical projects.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ∼1.6−2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward.
The Fiber Optical Cable and Connector System, "FOCCoS", subsystem of the Prime Focus Spectrograph, "PFS", for Subaru telescope, is responsible to feed four spectrographs with a set of optical fibers cables. The light injection for each spectrograph is assured by a convex curved slit with a linear array of 616 optical fibers. In this paper we present a design of a slit that ensures the right direction of the fibers by using masks of micro holes. This kind of mask is made by a technique called electroforming, which is able to produce a nickel plate with holes in a linear sequence. The precision error is around 1-μm in the diameter and 1-μm in the positions of the holes. This nickel plate may be produced with a thickness between 50 and 200 microns, so it may be very flexible. This flexibility allows the mask to be bent into the shape necessary for a curved slit. The concept requires two masks, which we call Front Mask, and Rear Mask, separated by a gap that defines the thickness of the slit. The pitch and the diameter of the holes define the linear geometry of the slit; the curvature of each mask defines the angular geometry of the slit. Obviously, this assembly must be mounted inside a structure rigid and strong enough to be supported inside the spectrograph. This structure must have a CTE optimized to avoid displacement of the fibers or increased FRD of the fibers when the device is submitted to temperatures around 3 degrees Celsius, the temperature of operation of the spectrograph. We have produced two models. Both are mounted inside a very compact Invar case, and both have their front surfaces covered by a dark composite, to reduce stray light. Furthermore, we have conducted experiments with two different internal structures to minimize effects caused by temperature gradients.This concept has several advantages relative to a design based on Vgrooves, which is the classical option. It is much easier and quicker to assemble, much cheaper, more accurate, easier to adjust; and it also offers the possibility of making a device much more strong, robust and completely miniaturized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.