The Rosetta software suite for macromolecular modeling, docking, and design is widely used in pharmaceutical, industrial, academic, non-profit, and government laboratories. Despite its broad modeling capabilities, Rosetta remains consistently among leading software suites when compared to other methods created for highly specialized protein modeling and design tasks. Developed for over two decades by a global community of over 60 laboratories, Rosetta has undergone multiple refactorings, and now comprises over three million lines of code. Here we discuss methods developed in the last five years in Rosetta, involving the latest protocols for structure prediction; protein-protein and protein-small molecule docking; protein structure and interface design; loop modeling; the incorporation of various types of experimental data; modeling of peptides, antibodies and proteins in the immune system, nucleic acids, non-standard chemistries, carbohydrates, and membrane proteins. We briefly discuss improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at www.rosettacommons.org.
The Rosetta Peptiderive protocol identifies, in a given structure of a protein–protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a ‘hot segment’, a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive.
RNA polymerase (Pol) III has a noncanonical role of viral DNA sensing in the innate immune system. This polymerase transcribes viral genomes to produce RNAs that lead to induction of type I interferons (IFNs). However, the genetic and functional links of Pol III to innate immunity in humans remain largely unknown. Here, we describe a rare homozygous mutation (D40H) in the POLR3E gene, coding for a protein subunit of Pol III, in a child with recurrent and systemic viral infections and Langerhans cell histiocytosis. Fibroblasts derived from the patient exhibit impaired induction of type I IFN and increased susceptibility to human cytomegalovirus (HCMV) infection. Cultured cell lines infected with HCMV show induction of POLR3E expression. However, induction is not restricted to DNA virus, as sindbis virus, an RNA virus, enhances the expression of this protein. Likewise, foreign nonviral DNA elevates the steady-state level of POLR3E and elicits promoter-dependent and -independent transcription by Pol III. Remarkably, the molecular mechanism underlying the D40H mutation of POLR3E involves the assembly of defective initiation complexes of Pol III. Our study links mutated POLR3E and Pol III to an innate immune deficiency state in humans.
CAPRI rounds 28 and 29 included, for the first time, peptide-receptor targets of three different systems, reflecting increased appreciation of the importance of peptide-protein interactions. The CAPRI rounds allowed us to objectively assess the performance of Rosetta FlexPepDock, one of the first protocols to explicitly include peptide flexibility in docking, accounting for peptide conformational changes upon binding. We discuss here successes and challenges in modeling these targets: we obtain top-performing, high-resolution models of the peptide motif for cases with known binding sites but there is a need for better modeling of flanking regions, as well as better selection criteria, in particular for unknown binding sites. These rounds have also provided us the opportunity to reassess the success criteria, to better reflect the quality of a peptide-protein complex model. Using all models submitted to CAPRI, we analyze the correlation between current classification criteria and the ability to retrieve critical interface features, such as hydrogen bonds and hotspots. We find that loosening the backbone (and ligand) RMSD threshold, together with a restriction on the side chain RMSD measure, allows us to improve the selection of high-accuracy models. We also suggest a new measure to assess interface hydrogen bond recovery, which is not assessed by the current CAPRI criteria. Finally, we find that surprisingly much can be learned from rather inaccurate models about binding hotspots, suggesting that the current status of peptide-protein docking methods, as reflected by the submitted CAPRI models, can already have a significant impact on our understanding of protein interactions. Proteins 2017; 85:445-462. © 2016 Wiley Periodicals, Inc.
Intrinsically disordered regions in proteins (IDRs) mediate many disease‐related protein–protein interactions. However, the unfolded character and continuous conformational changes of IDRs make them difficult to target for therapeutic purposes. Here, we show that a designed peptide based on the disordered p53 linker domain can be used to target a partner IDR from the anti‐apoptotic iASPP protein, promoting apoptosis of cancer cells. The p53 linker forms a hairpin‐like structure with its two termini in close proximity. We designed a peptide derived from the disordered termini without the hairpin, designated as p53 LinkTer. The LinkTer peptide binds the disordered RT loop of iASPP with the same affinity as the parent p53 linker peptide, and inhibits the p53–iASPP interaction in vitro. The LinkTer peptide shows increased stability to proteolysis, penetrates cancer cells, causes nuclei shrinkage, and compromises the viability of cells. We conclude that a designed peptide comprising only the IDR from a peptide sequence can serve as an improved inhibitor since it binds its target protein without the need for pre‐folding, paving the way for therapeutic targeting of IDRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.