A single flash accompanied by two auditory beeps tends to be perceived as two flashes (Shams et al. Nature 408:788, 2000, Cogn Brain Res 14:147–152, 2002). This phenomenon is known as ‘sound-induced flash illusion.’ Previous neuroimaging studies have shown that this illusion is correlated with modulation of activity in early visual cortical areas (Arden et al. Vision Res 43(23):2469–2478, 2003; Bhattacharya et al. NeuroReport 13:1727–1730, 2002; Shams et al. NeuroReport 12(17):3849–3852, 2001, Neurosci Lett 378(2):76–81, 2005; Watkins et al. Neuroimage 31:1247–1256, 2006, Neuroimage 37:572–578, 2007; Mishra et al. J Neurosci 27(15):4120–4131, 2007). We examined how robust the illusion is by testing whether the frequency of the illusion can be reduced by providing feedback. We found that the sound-induced flash illusion was resistant to feedback training, except when the amount of monetary reward was made dependent on accuracy in performance. However, even in the latter case the participants reported that they still perceived illusory two flashes even though they correctly reported single flash. Moreover, the feedback training effect seemed to disappear once the participants were no longer provided with feedback suggesting a short-lived refinement of discrimination between illusory and physical double flashes rather than vanishing of the illusory percept. These findings indicate that the effect of sound on the perceptual representation of visual stimuli is strong and robust to feedback training, and provide further evidence against decision factors accounting for the sound-induced flash illusion.
Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.
Previous work has highlighted the role of haptic feedback for manual dexterity, in particular for the control of precision grip forces between the index finger and thumb. It is unclear how fine motor skills involving more than just two digits might be affected, especially given that loss of sensation from the hand affects many neurological patients, and impacts on everyday actions. To assess the functional consequences of haptic deficits on multi-digit grasp of objects, we studied the ability of three rare individuals with permanent large-fibre sensory loss involving the entire upper limb. All three reported difficulties in everyday manual actions (ABILHAND questionnaire). Their performance in a reach–grasp–lift task was compared to that of healthy controls. Twenty objects of varying shape, mass, opacity and compliance were used. In the reach-to-grasp phase, we found slower movement, larger grip aperture and less dynamic modulation of grip aperture in deafferented participants compared to controls. Hand posture during the lift phase also differed; deafferented participants often adopted hand postures that may have facilitated visual guidance, and/or reduced control complexity. For example, they would extend fingers that were not in contact with the object, or fold these fingers into the palm of the hand. Variability in hand postures was increased in deafferented participants, particularly for smaller objects. Our findings provide new insights into how the complex control required for whole hand actions is compromised by loss of haptic feedback, whose contribution is, thus, highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.