There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of beta-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Abeta(1-42), i.e., Abeta(25-35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Abeta(25-35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Abeta(25-35).
A novel ruthenium complex, linked to a cholesterol-containing nucleolipid (named ToThyCholRu), stabilized by lipid aggregates for antineoplastic therapy is presented. In order to retard the degradation kinetics typically observed for several ruthenium-based antineoplastic agents, ToThyCholRu is incorporated into a liposome bilayer formed by POPC. The resulting nanoaggregates contain up to 15% in moles of the ruthenium complex, and are shown to be stable for several weeks. The liposomes host the ruthenium-nucleolipid complex with the metal ion surrounded by POPC lipid headgroups and the steroid moiety inserted in the more external acyl chain region. These ruthenium-containing liposomes are more effective in inhibiting the growth of cancer cells than a model NAMI-A-like ruthenium complex, prepared for a direct evaluation of their anti-proliferative activity. These results introduce new perspectives in the design of innovative transition-metal-based supramolecular systems for anticancer drug vectorization.
Diffusion coefficients for the binary system glycerol + water have been studied at 25 °C. Accurate mutual
diffusion coefficients have been measured by the Taylor dispersion and Gouy interferometric techniques.
Intradiffusion coefficients of both components have been measured by the pulsed gradient spin−echo−Fourier transform NMR technique. The collected diffusion coefficients have been combined with data of
water excess chemical potential present in the literature to calculate the velocity correlation coefficients.
The results have been interpreted in terms of molecular interactions.
are reported for aqueous solutions of lactose, sucrose, glucose, and fructose at various concentrations (0.001 to 0.1) mol‚dm-3 and temperatures (298.15 to 328.15) K. The hydrodynamic radius and activation energy for the diffusion of aqueous sugars are calculated from those results. In addition, the measured diffusion coefficients are used with the Hartley equation to estimate activity coefficients for aqueous lactose, sucrose, glucose, and fructose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.