Background Social media networks provide an abundance of diverse information that can be leveraged for data-driven applications across various social and physical sciences. One opportunity to utilize such data exists in the public health domain, where data collection is often constrained by organizational funding and limited user adoption. Furthermore, the efficacy of health interventions is often based on self-reported data, which are not always reliable. Health-promotion strategies for communities facing multiple vulnerabilities, such as men who have sex with men, can benefit from an automated system that not only determines health behavior risk but also suggests appropriate intervention targets. Objective This study aims to determine the value of leveraging social media messages to identify health risk behavior for men who have sex with men. Methods The Gay Social Networking Analysis Program was created as a preliminary framework for intelligent web-based health-promotion intervention. The program consisted of a data collection system that automatically gathered social media data, health questionnaires, and clinical results for sexually transmitted diseases and drug tests across 51 participants over 3 months. Machine learning techniques were utilized to assess the relationship between social media messages and participants' offline sexual health and substance use biological outcomes. The F1 score, a weighted average of precision and recall, was used to evaluate each algorithm. Natural language processing techniques were employed to create health behavior risk scores from participant messages. Results Offline HIV, amphetamine, and methamphetamine use were correctly identified using only social media data, with machine learning models obtaining F1 scores of 82.6%, 85.9%, and 85.3%, respectively. Additionally, constructed risk scores were found to be reasonably comparable to risk scores adapted from the Center for Disease Control. Conclusions To our knowledge, our study is the first empirical evaluation of a social media–based public health intervention framework for men who have sex with men. We found that social media data were correlated with offline sexual health and substance use, verified through biological testing. The proof of concept and initial results validate that public health interventions can indeed use social media–based systems to successfully determine offline health risk behaviors. The findings demonstrate the promise of deploying a social media–based just-in-time adaptive intervention to target substance use and HIV risk behavior.
Healthcare big data remains under-utilized due to various incompatibility issues between the domains of data analytics and healthcare. The lack of generalizable iterative feature acquisition methods under budget and machine learning models that allow reasoning with a model’s uncertainty are two examples. Meanwhile, a boost to the available data is currently under way with the rapid growth in the Internet of Things applications and personalized healthcare. For the healthcare domain to be able to adopt models that take advantage of this big data, machine learning models should be coupled with more informative, germane feature acquisition methods, consequently adding robustness to the model’s results. We introduce an approach to feature selection that is based on Bayesian learning, allowing us to report the level of uncertainty in the model, combined with false-positive and false-negative rates. In addition, measuring target-specific uncertainty lifts the restriction on feature selection being target agnostic, allowing for feature acquisition based on a target of focus. We show that acquiring features for a specific target is at least as good as deep learning feature selection methods and common linear feature selection approaches for small non-sparse datasets, and surpasses these when faced with real-world data that is larger in scale and sparseness.
In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration. The objectives of this paper are twofold. First, we proposed a method for generating imputations from the conditional distribution of missing values given observed values. Second, we use the generated samples to estimate the distribution of target assignments given incomplete data. In order to generate imputations, we train a simple and effective generator network to generate imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using imputed samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed method is evaluated on CIFAR-10 image dataset as well as two real-world tabular classification datasets, under various missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations, as well as providing estimates for the class uncertainties in a classification task when faced with missing values.Preprint. Under review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.