Adult neurogenesis in the hippocampal dentate gyrus plays an important role in learning and memory. However, the precise contribution of the new neurons to hippocampal function remains controversial. Emerging evidence suggests that neurogenesis is important for pattern separation and for mitigating interference when similar items must be learned at different times. In the present study, we directly test this prediction using a recently developed olfactory memory task that has those specific features. In this task, rats learn two highly interfering lists of odor pairs, one after the other in either the same or in different contexts. Consistent with our hypothesis, focal cranial irradiation, resulting in selective reduction of neurogenesis within the dentate gyrus, significantly impaired the ability to overcome interference during learning of the second list. The ability to learn a single odor list was unimpaired. We also show that irradiation had no effect on learning in a hippocampal dependent spatial alternation task. Although both tasks involved learning interfering responses, the time course for learning the interfering items differed. Learning the interfering odor lists took place sequentially, over the course of several sessions, whereas learning the interfering spatial locations took place concurrently, within each session. Thus, the gradual addition of new neurons may have provided a pattern separation mechanism for the olfactory task but not for the maze task. These findings demonstrate a role for neurogenesis in resolving interference and they are consistent with models suggesting a critical role for neurogenesis in pattern separation.
In recent years, many animal models of memory have focused on one or more of the various components of episodic memory. For example, the odor sequence memory task requires subjects to remember individual items and events (the odors) and the temporal aspects of the experience (the sequence of odor presentation). The well-known spatial context coding function of the hippocampus, as exemplified by place cell firing, may reflect the ‘where’ component of episodic memory. In the present study, we added a contextual component to the odor sequence memory task by training rats to choose the earlier odor in one context and the later odor in another context and we compared the effects of temporary hippocampal lesions on performance of the original single context task and the new dual context task. Temporary lesions significantly impaired the single context task, although performance remained significantly above chance levels. In contrast, performance dropped all the way to chance when temporary lesions were used in the dual context task. These results demonstrate that rats can learn a dual context version of the odor sequence learning task which requires the use of contextual information along with the requirement to remember the ‘what’ and ‘when’ components of the odor sequence. Moreover, the additional requirement of context-dependent expression of the ‘what-when’ memory made the task fully dependent on the hippocampus. Moreover, the addition of the contextual component made the task fully dependent on the hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.