Bullous pemphigoid (BP) is the most common autoimmune bullous disorder which is characterized by autoantibodies against hemidesmosomal proteins of the skin and mucous membranes. Collagen XVII and dystonin-e have been identified as target antigens. BP affects mostly the elderly. The incidence of the disease is increasing gradually and is associated with high morbidity and mortality. Clinically, BP is characterized by an intensely pruritic eruption with widespread bullous lesions. The clinical diagnosis can be challenging in the setting of atypical presentations. Diagnosis of BP relies on the integration of clinical, histological, immunopathological, and serological findings. The treatment is mainly based on topical and/or systemic glucocorticoids, but anti-inflammatory antibiotics and steroid sparing adjuvants are useful alternatives. Localised and mild BP can be treated with topical corticosteroids alone.
Pemphigus is an autoimmune blistering skin disease caused primarily by autoantibodies against desmoglein (Dsg)1 and 3. Here, we characterized the mechanisms engaged by pemphigus IgG from patients with different clinical phenotypes and autoantibody profiles. All pemphigus vulgaris (PV) and pemphigus foliaceus (PF) IgG and AK23, a monoclonal mouse antibody against Dsg3, caused loss of cell cohesion, cytokeratin retraction and p38MAPK activation. Strong alterations in Dsg3 distribution were caused by mucosal (aDsg3 antibodies), mucocutaneous (aDsg1 + aDsg3) as well as atypical (aDsg3) PV-IgG. All PV-IgG fractions and AK23 compromised Dsg3 but not Dsg1 binding and enhanced Src activity. In contrast, rapid Ca2+ influx and Erk activation were induced by mucocutaneous PV-IgG and pemphigus foliaceus (PF) IgG (aDsg1) whereas cAMP was increased by mucosal and mucocutaneous PV-IgG only. Selective inhibition of p38MAPK, Src or PKC blocked loss of keratinocyte cohesion in response to all autoantibody fractions whereas Erk inhibition was protective against mucocutaneous PV-IgG and PF-IgG only. These results demonstrate that signaling patterns parallel the clinical phenotype as some mechanisms involved in loss of cell cohesion are caused by antibodies targeting Dsg3 whereas others correlate with autoantibodies against Dsg1. The concept of key desmosome regulators may explain observations from several experimental models of pemphigus.
Serum PD-L1 (sPD-L1) levels are associated with prognosis in various tumors but has not yet been investigated in advanced bladder cancer. We assessed pretreatment serum samples from 83 BC patients who received platinum chemotherapy and from 12 patients who underwent immune checkpoint inhibitor (ICI) therapy. In addition, on-treatment samples from further therapy cycles were collected during chemotherapy (n = 58) and ICI therapy (n = 11). Serum PD-L1 levels were determined using ELISA. High baseline sPD-L1 levels were associated with worse ECOG status (p = 0.007) and shorter overall survival for both chemotherapy- and ICI-treated patients (p = 0.002 and p = 0.040, respectively). Multivariate analysis revealed high baseline sPD-L1 level as an independent predictor of poor survival for platinum-treated patients (p = 0.002). A correlation analysis between serum concentrations of PD-L1 and matrix metalloprotease-7 (MMP-7)—a protease which was recently found to cleave PD-L1—revealed a positive correlation (p = 0.001). No significant sPD-L1 changes were detected during chemotherapy, while in contrast we found a strong, 25-fold increase in sPD-L1 levels during atezolizumab treatment. In conclusion, our work demonstrates that pretreatment sPD-L1 levels are associated with a poor prognosis of BC patients undergoing platinum and ICI therapy. Future research should prospectively address the value of sPD-L1 in predicting treatment response.
Viral reactivation is a frequent complication of allogeneic hematopoietic stem cell transplantation especially in children. For refractory cases, rapid virus-specific T-cell therapy would be ideally implemented within a few days. Over the course of a year in our pediatric cohort of 43 allogeneic transplantation, 9 patients fulfilled criteria for virus-specific T-cell therapy. Viral infections were due to cytomegalovirus (CMV) in 3, Epstein-Barr virus (EBV) in 2, and adenovirus (AdV) in 1 case, whereas >1 virus was detected in 3 cases. Viral diseases necessitating a T-cell therapy were CMV pneumonitis and colitis, AdV enteritis and cystitis, and EBV-induced posttransplantation lymphoproliferative disease. Cells were produced by the CliniMACS Prodigy CCS (IFN-gamma) System within 24 hours after mononuclear leukapheresis. Eight patients became completely asymptomatic, whereas 7 also cleared the virus. Six patients are alive without viral illness or sequelae demonstrating viral DNA clearance in peripheral blood with a median follow-up of 535 (350-786) days. One patient with CMV pneumonitis died of respiratory insufficiency. In 2 cases the viral illness improved or cleared, however, the patients died of invasive aspergillosis. No cases of graft-versus-host disease, rejection, organ toxicity, or recurrent infection were noticed. Virus-specific T-cell therapy implemented by the CliniMACS Prodigy CCS (IFN-gamma) System is an automated, fast, safe, and probably effective way to control resistant viral diseases after pediatric hematopoietic stem cell transplantation.
Hematopoietic stem cell transplantation (HSCT)-associated thrombotic microangiopathy (TA-TMA) is a multifactorial complication, and its prediction is largely unresolved. Our aim was to analyze changes of complement profile after HSCT to identify potential markers of TA-TMA development. Thirty-three consecutive pediatric patients (9.6 ± 4.4 years old) who underwent allogeneic HSCT due to malignant (n = 17) or nonmalignant (n = 16) indications were included in this study. Graft-versus-host disease (GVHD) was diagnosed using Glucksberg criteria, viral reactivation was monitored, 5 different TA-TMA diagnostic criteria were applied, and all important clinical and laboratory parameters of TA-TMA activity were registered. Complement pathway activities, components and terminal pathway activation marker (sC5b-9) levels were systematically measured before transplantation and on days 28, 56, and 100 after HSCT. During the first 100 days after HSCT, 1 of 33 patients died (day 50, multiple organ failure), whereas 10 subjects met the criteria for TA-TMA, typically on day 61 (range, 16 to 98 days). TA-TMA was preceded by acute GVHD in 3 of 10 patients, by viral reactivation in 2 of 10, or by both in 4 of 10 cases. Baseline sC5b-9 levels did not differ in patients without (200 [interquartile range, 144 to 266] ng/mL), or with (208 [interquartile range, 166 to 271] ng/mL) subsequent TA-TMA; however, on day 28 significant differences were observed (201 [interquartile range, 185 to 290] ng/mL versus 411 [interquartile range, 337 to 471] ng/mL; P = .004). Importantly, all 10 patients with TMA showed increase in sC5b-9 level from baseline level to day 28, whereas in patients without TMA the same tendency was observed for only 9 of 23 patients (P = .031). No additional complement parameters were closely associated with the development of TA-TMA. Development of TA-TMA occurred in 30% of our patients, typically after GVHD and/or viral reactivation. However, early raise of sC5b-9 activation marker was predictive for later development of TA-TMA, and should therefore be considered as an alarming sign necessitating a careful monitoring of all TA-TMA activity markers. Further studies enrolling a higher number of patients are necessary to determine if terminal pathway activation is an independent predictor of TA-TMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.