Gestational infection is increasingly being recognized for its involvement as causative mechanism in severe developmental brain abnormalities and its contribution to the pathogenesis of psychopathologies later in life. First observations in the widely accepted maternal immune activation (MIA) model based upon the systemic administration of the viral mimetic Polyinosinic:polycytidylic acid (poly(I:C)) have recently suggested a transmission of behavioral and transcriptional traits across generations. Although maternal care behavior (MCB) is known as essential mediator of the transgenerational effects of environmental challenges on offspring brain function and behavior, the possible propagation of alterations of MCB resulting from MIA to following generations has not yet been examined. Here we show that poly(I:C) stimulation at embryonic day 12.5 (E12.5) leads to aberrant MCB and that this effect is transmitted to the female F1 offspring. The transgenerational effects on MCB are paralleled by enhanced depression-like behavior in the second generation F2 offspring with contributions of both maternal and paternal heritages. Examination of offspring hippocampal expression of genes known as targets of MCB and relevant for ensuing non-genetic transmission of altered brain function and behavior revealed transgenerationally conserved and modified expressional patterns in the F1 and F2 generation. Collectively these data firstly demonstrate the transgenerational transmission of the impact of gestational immune activation on the reproductive care behavior of the mother. Behavioral and molecular characteristics of first and second generation offspring suggest transgenerationally imprinted consequences of gestational infection on psychopathological traits related to mood disorders which remain to be examined in future cross-fostering experiments.
Major depressive disorder (MDD) is one of the most debilitating psychiatric diseases, affecting a large percentage of the population worldwide. Currently, the underlying pathomechanisms remain incompletely understood, hampering the development of critically needed alternative therapeutic strategies, which further largely depends on the availability of suitable model systems.Here we used a mouse model of early life stress – a precipitating factor for the development of MDD – featuring infectious stress through maternal immune activation (MIA) by polyinosinic:polycytidilic acid (Poly(I:C)) to examine epigenetic modulations as potential molecular correlates of the alterations in brain structure, function and behavior. We found that in adult female MIA offspring anhedonic behavior was associated with modulations of the global histone acetylation profile in the hippocampus. Morevoer, specific changes at the promoter and in the expression of the serotonin transporter (SERT), critically involved in the etiology of MDD and pharmacological antidepressant treatment were detected. Furthermore, an accompanying reduction in hippocampal levels of histone deacetylase (HDAC) 1 was observed in MIA as compared to control offspring.Based on these results we propose a model in which the long-lasting impact of MIA on depression-like behavior and associated molecular and cellular aberrations in the offspring is brought about by the modulation of epigenetic processes and consequent enduring changes in gene expression. These data provide additional insights into the principles underlying the impact of early infectious stress on the development of MDD and may contribute to the development of new targets for antidepressant therapy.
Maternal immune activation (MIA) is a well-established model for the investigation of the deleterious effects of gestational infection on offspring mental health later in life. Hence, MIA represents a critical environmental variable determining brain development and the depending neural and behavioral functions in the progeny. Transgenerational transmission of some of the effects of MIA has been recently reported using the Polyinosinic:polycytidylic acid (Poly (I:C)) MIA model in C57BL/6 (C57) inbred mice. However, little is known about the underlying molecular mechanisms and the possible relevance of the specific genetic make-up of the inbred mouse strain used. Here we set out to characterize the effects of gestational Poly (I:C) treatment in C3H/HeNCrl mice (C3H), focusing on maternal care and offspring depression-like behavior and its intergenerational potential. miRNA expression in the offspring hippocampus in the F1 and F2 generations was examined as possible mechanism contributing to the observed behavioral effects. The impact of MIA on maternal care and its transmission to F1 females was previously observed in C57 mice was also found in C3H mice. Depression-like behavior in the adult offspring in C3H F1 and F2 females differed from reports of the C57 strain in the literature, suggesting a potential modulating role of the genetic background in the Poly(I:C) MIA mouse model. As the pattern of expression of selected candidate miRNAs in the F1 and F2 offspring hippocampus was not conserved between the two generations, it is unlikely to be a direct consequence of altered maternal care, or to be an immediate determinant of offspring emotionality.
Depression is a very common psychiatric disorder affecting approximately 300 million people worldwide with the prevalence being twice as high in women as in men. Despite intense research efforts in recent decades, the neurobiological basis underlying depression remains incompletely understood. However, the exposure to chronic stress is widely accepted to constitute a precipitating factor for the development of this mental disorder. Several animal models for the investigation of the pathogenetic link between chronic stress and depression exist and have yielded important insights. The present study aimed at comparing two published protocols for the induction of depression-like behavior in mice based on chronic oral glucocorticoid application. Given the gender distribution in the prevalence of depression, the second goal of this study was to reveal possible differences in the behavioral responses of female and male mice to corticosterone (CORT) treatment. CORT treatment was found to modulate depression-like behavior in selected behavioral paradigms in a sex- and protocol-specific manner. These data are of relevance for the experimental design and interpretation of future studies in the field and further highlight the relevance of “sex as biological variable” to be considered an important parameter for experimental planning and interpretation of results.
The effects of resveratrol (RES) in heart failure have already been evaluated in animal models; however, in human clinical trials, they have not been confirmed yet. The aim of this study was to assess the effects of resveratrol treatment in systolic heart failure patients (heart failure with reduced ejection fraction or HFrEF). In this human clinical trial, 60 outpatients with NYHA (New York Heart Association) class II-III HFrEF were enrolled and randomized into two groups: receiving either 100-mg resveratrol daily or placebo for three months. At the beginning and at the end of the study echocardiography, a six-minute walk test, spirometry, quality of life questionnaire, lab test and RNA profile analysis were performed. The systolic and diastolic left ventricular function, as well as the global longitudinal strain, were improved significantly in the resveratrol-treated group (RES). Exercise capacity, ventilation parameters and quality of life also improved significantly in the RES group. In parallel, the cardiac biomarker levels (N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and galectin-3) decreased in the treated group. The level of inflammatory cytokines decreased significantly after RES supplementation, as a consequence of the decreased expression level of leucocyte electron transport chain proteins. The main findings of our trial are that RES treatment added to the standard heart failure therapy improved heart function and the clinical condition by moderating the inflammatory processes in patients with HFrEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.