We previously cloned heparan sulfate 6-O-sulfotransferase (HS6ST) (Habuchi, H., Kobayashi, M., and Kimata, K. (1998) J. Biol. Chem. 273, 9208 -9213). In this study, we report the cloning and characterization of three mouse isoforms of HS6ST, a mouse homologue to the original human HS6ST (HS6ST-1) and two novel HS6STs (HS6ST-2 and HS6ST-3). The cDNAs have been obtained from mouse brain cDNA library by cross-hybridization with human HS6ST cDNA. The three cDNAs contained single open reading frames that predicted type II transmembrane proteins composed of 401, 506, and 470 amino acid residues, respectively. Amino acid sequence of HS6ST-1 was 51 and 57% identical to those of HS6ST-2 and HS6ST-3, respectively. HS6ST-2 and HS6ST-3 had the 50% identity. Overexpression of each isoform in COS-7 cells resulted in about 10-fold increase of HS6ST activity. The three isoforms purified with anti-FLAG antibody affinity column transferred sulfate to heparan sulfate and heparin but not to other glycosaminoglycans. Each isoform showed different specificity toward the isomeric hexuronic acid adjacent to the targeted N-sulfoglucosamine; HS6ST-1 appeared to prefer the iduronosyl N-sulfoglucosamine while HS6ST-2 had a different preference, depending upon the substrate concentrations, and HS6ST-3 acted on either substrate. Northern analysis showed that the expression of each message in various tissues was characteristic to the respective isoform. HS6ST-1 was expressed strongly in liver, and HS6ST-2 was expressed mainly in brain and spleen. In contrast, HS6ST-3 was expressed rather ubiquitously. These results suggest that the expression of these isoforms may be regulated in tissue-specific manners and that each isoform may be involved in the synthesis of heparan sulfates with tissue-specific structures and functions.Heparan sulfate proteoglycans (HSPGs) 1 are ubiquitously present on cell surface and in extracellular matrix including basement membrane and have divergent structures and functions (1-3). The heparan sulfate (HS) chains in HSPGs are known to interact with a variety of proteins such as heparinbinding growth factors, extracellular matrix components, protease inhibitors, protease, and lipoprotein lipase (4 -8). These interactions are implicated not only in various dynamic cellular behaviors including cell proliferation, differentiation, adhesion, migration, and morphology during development (9 -16), but also in various physiological phenomena such as inflammation (17), blood coagulation (18 -20), and tumor cell invasion and malignancy (21-23). Moreover, the pathogens such as bacteria, parasites, and viruses are known to infect host cells through the interactions between the cell surface HS on host cell and the coat proteins or cell surface proteins of pathogens (24,25).Recently, genetic screens and analyses are suggesting not only in Drosophila but also in mammals that these interactions also play pivotal roles in embryonic development. For example, the sugarless mutant (10 -12), which is deficient in UDP-glucose dehydrogenas...
Chondroitin sulfate proteoglycans (CSPGs) represent a major barrier to regenerating axons in the central nervous system (CNS), but the structural diversity of their polysaccharides has hampered efforts to dissect the structure-activity relationships underlying their physiological activity. By taking advantage of our ability to chemically synthesize specific oligosaccharides, we demonstrate that a sugar epitope on CSPGs, chondroitin sulfate-E (CS-E), potently inhibits axon growth. Removal of the CS-E motif significantly attenuates the inhibitory activity of CSPGs on axon growth. Furthermore, CS-E functions as a protein recognition element to engage receptors including the transmembrane protein tyrosine phosphatase PTPσ, thereby triggering downstream pathways that inhibit axon growth. Finally, masking the CS-E motif using a CS-Especific antibody reversed the inhibitory activity of CSPGs and stimulated axon regeneration in vivo. These results demonstrate that a specific sugar epitope within chondroitin sulfate polysaccharides can direct important physiological processes and provide new therapeutic strategies to regenerate axons after CNS injury.
Heparan sulfate chains (HS) are initially synthesized on core proteins as linear polysaccharides composed of glucuronic acid--N-acetylglucosamine repeating units and subjected to marked structural modification by sulfation (N-, 2-O-, 6-O-, 3-O-sulfotransferases) and epimerization (C5-epimerase) at the Golgi lumen and further by desulfation (6-O- endosulfatase) at the cell surface, after which divergent fine structures are generated. The expression patterns and specificity of the modifying enzymes are, at least partly, responsible for the elaboration of these fine structures of heparan sulfate. HS interacts with many proteins including growth factors (GF) and morphogens through specific fine structures. Recent biochemical and genetic studies have presented evidence that HS plays important roles in cell behavior and organogenesis. In knock-down experiments of heparan sulfate 6-O-sulfotransferase, 6-O-sulfated units in HS have been shown to act as a stimulator or suppressor according to individual GF/morphogen signaling systems.
We isolated a cDNA clone encoding mouse N-acetylglucosamine-6-O-sulfotransferase based on sequence homology to the previously cloned mouse chondroitin 6-sulfotransferase. The cDNA clone contained an open reading frame that predicts a type II transmembrane protein composed of 483 amino acid residues. The expressed enzyme transferred sulfate to the 6 position of nonreducing GlcNAc in GlcNAc1-3Gal1-4GlcNAc. Gal1-4GlcNAc1-3Gal1-4GlcNAc and various glycosaminoglycans did not serve as acceptors. Expression of the cDNA in COS-7 cells resulted in production of a cell-surface antigen, the epitope of which was NeuAc␣2-3Gal1-4(SO 4 -6)GlcNAc; double transfection with fucosyltransferase IV yielded Gal1-4(Fuc␣1-3)(SO 4 -6)GlcNAc antigen. The sulfotransferase mRNA was strongly expressed in the cerebrum, cerebellum, eye, pancreas, and lung of adult mice. In situ hybridization revealed that the mRNA was localized in high endothelial venules of mesenteric lymph nodes. The sulfotransferase was concluded to be involved in biosynthesis of glycoconjugates bearing the 6-sulfo N-acetyllactosamine structure such as 6-sulfo sialyl Lewis X. The products of the sulfotransferase probably include glycoconjugates with intercellular recognition signals; one candidate of such a glycoconjugate is an L-selectin ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.