A turbulent separation bubble is forced by single- and double-frequency sinusoidal disturbances, with the emphasis placed on the reattachment length as a function of the forcing amplitude and frequency. The separation bubble is that formed along the side of a blunt circular cylinder with a square leading edge. In single-frequency forcing, the reattachment length attains a minimum at a particular forcing frequency, F, which scales with the frequency of shedding of vortices from the reattachment region of the separated shear layer. A flow model is presented to interpret the frequency F. Forcing of sufficiently high amplitude eliminates the recirculating region in a range of the forcing frequency. Flow visualization and a survey of the mean flow and turbulence properties demonstrate how the flow in the separated shear layer is modified by the forcing. In double-frequency forcing, the superposition of the F-component on its higher or subharmonic components is considered. A non-resonant combination of the two frequencies is also considered.
A mosquito's pump is a highly effective system in the small suction domain. To understand a mosquito's blood suction mechanism, we analysed the characteristics of red blood cells (RBCs) in human blood during and after suction by a female mosquito. Focussing on the flow patterns of the RBCs in human blood being sucked by a mosquito, we visualized blood flow by using a micro-particle image velocimetry (μ-PIV) system, which combines an optical microscope and a PIV method. In an ex vivo experiment, a female mosquito was supplied diluted blood at the tip of the proboscis. We examined the blood flow around the tip of the proboscis and observed that RBCs were periodically sucked towards a hole around the tip. The sucked RBCs then homogeneously flowed parallel to the inner surface of the proboscis without adhering to the wall. Furthermore, using a bioelectric recording system, we directly measured electrical signals generated during suction by the pump muscles located in the mosquito's head. We found that the electrical signal power was synchronized with the acceleration of the RBCs in the sucking phase. A histological stain method was adapted for the observation of the form and internal structure of RBCs in the mosquito. Although the blood flow analysis revealed that the RBCs underwent shear stress during suction, RBCs in the mosquito's stomach maintained their original shape.
Splashes caused by a spherical body plunging into water were investigated experimentally using a high speed CMOS camera. We categorized types of splash according to impact velocities of the sphere. Three types of splash were found: Type-I is a thin spire-type splash, Type-II is a mushroom-type splash with many droplets, and Type-III is a crown-type splash with many droplets. The reaction to the concave water surface attached to the sinking sphere is a cause of the Type-I splash. The film flow climbing up the sphere is a dominant cause of the Type-II splash. The velocity of the film flow, which is proportional to the impact velocity of the sphere, affects the fingers of the film flow, detaching of droplets, and maximum height of the Type-II splash. The Type-III crown-type splash is characterized by water jets with many droplets. A bulky air column in water is formed behind the sinking sphere, and longitudinal ridges and ripples on the surface of the air column were observed.
Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newly discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. These results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.