Chronic or sustained hyperglycemia associated to diabetes mellitus leads to many medical complications, thus, it is necessary to track the evolution of patients for providing the adequate management of the disease that is required for the restoration of the carbohydrate metabolism to a normal state. In this paper, a novel monitoring approach based on mm-wave spectroscopy is comprehensively described and experimentally validated using living animal models as target. The measurement method has proved the possibility of non-invasive, in-vivo, detection of hyperglycemia-associated conditions in different mouse models, making possible to clearly differentiate between several hyperglycemic states.
Even though dual-comb-based systems are employed almost routinely nowadays in an ever-increasing number of applications, an efficient combination of this effective technique with an imaging arrangement, which would undoubtedly revolutionize hyperspectral imaging, had not yet been demonstrated. Here we present, to our knowledge, the first hyperspectral dual-comb imaging system in which interferograms are directly detected by a video camera. The system, based on a dual-comb scheme capable of consistently generating interferograms at a rate of 1 Hz and below, combines fast hyperspectral imaging with unprecedented optical resolution and fully multiplex operation. Various proof-of-principle experiments demonstrating hyperspectral imaging of molecular resonances have proved that the direct hyperspectral dual-comb imaging method presented here is capable of characterizing a scene with super-fine resolution in a narrow optical span within 1 s.
A fast and reliable photoacoustic (PA) sensor for trace gas detection is reported. The sensor is based on a 3D-printed resonant cell in combination with a continuous wave mode-hop-free external cavity quantum cascade laser to rapidly acquire gas absorption data in the midinfrared range. The cell is designed so as to minimize the window PA background at a selected acoustic resonance. The goal is a resonant PA cell capable of detecting the traces of gases using wavelength modulation of the laser source and second harmonic detection. The versatility and enhancement of the limit of detection at sub-ppm levels are investigated by monitoring specific lines of hydrogen sulfide (H 2 S). The noise-equivalent absorption normalized to laser-beam power and detection bandwidth is 1 07 × 10 -8 W cm -1 Hz -1/2 for H 2 S targeting the absorption line at 1247.2 cm −1 . These properties make the sensor suitable for various practical sensors for water quality applications.
A sensitive optical microphone for photoacoustic spectroscopy based on the common path topology of a fibre laser Doppler vibrometer (FLDV) using phase-generated carrier demodulation and a slim diaphragm as an acoustic wave transducer was demonstrated. A resonant gas cell was adapted to enhance gas-detection performance and simultaneously provide efficient cancellation of the window background acoustic signal. Ammonia (NH3) was selected as the target gas. The absorption line was experimentally identified using a distributed feedback laser diode emitting at 1530 nm. The linearity and sensitivity of the gas sensor were measured using wavelength modulation spectroscopy with second harmonic detection. A Teflon diaphragm was used to implement the optical microphone, along with the FLDV, showing a minimum detectable pressure of 79.5 μPa/Hz1/2. The noise-equivalent absorption sensitivity for NH3 detection at the absorption line at 1531.7 nm was 1.85 × 10−8 W cm−1 Hz−1/2, and the limit of detection was 785 ppbv.
The pathological skin phenotype caused by hyperglycemia is an important indicator for the progress of diabetes mellitus. An early detection of diabetes assures an early intervention to regulate the carbohydrate metabolism. In this publication a non-invasive detection principle based on the measurement of complex scattering parameters in the millimeter-wave frequency range is presented. The measurement principle provides evidence of the applicability for the identification of different glycemic states in animal models. The method proposed here can be used to predict diabetes status in animal models and is interesting for application on humans in view of safeness of millimeter-wave radiation. Furthermore the complex scattering parameters give important information about the anatomic varieties between the analyzed skin samples of the different mice strains. In contrast to other methods, our approach is less sensitive to skin variations between animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.