This study describes the use of alternative operational strategies in the solid-state fermentation of the agroindustrial leftover sugar cane bagasse (SCB) supplemented with L-phenylalanine, for bioproducing natural 2-phenylethanol (2-PE) and 2-phenethyl acetate (2-PEA) using K. marxianus. Here, fed-batch and sequential-batch have been assessed at two scales (1.6 and 22 L) as tools to increase the production, as well as to enhance the sustainability of this residue-based process. While in the reference batch strategy a maximum of 17 mg of 2-PE+2-PEA per gram of added SCB was reached at both scales, the implementation of fed-batch mode induced a production increase of 11.6% and 12.5%, respectively. Also, the production was increased by 16.9% and 2.4% as compared to the batch when a sequential-batch mode was used. Furthermore, the use of these strategies was accompanied by lower consumption of key resources like the inoculum, air, and time, promoting savings between 22% and 76% at both scales.
Lignocellulolytic enzymes from low-cost sources are gaining attention as a tool to reduce production costs. Such enzymes can be obtained sustainably by diverse fungal strains via solid-state fermentation (SSF) of lignocellulosic-derived residues as substrates. Besides, these enzymes allow hydrolyzing the same residue, releasing fermentable sugars that can be transformed into valueadded products. This study shows a two-stage valorization approach for the lignocellulosic leftover brewer's spent grain (BSG): first, by producing lignocellulolytic enzymes through the SSF of BSG using three fungal strains and, second, by using the selfproduced enzymes to hydrolyze the same BSG and obtaining sugar-rich hydrolysates that serve as an alternative carbon source for polyhydroxyalkanoates (PHA) production. From the evaluated set, Aspergillus niger and Thermoascus aurantiacus produced the highest xylanase activities compared with Trichoderma reesei (268 ± 24, 241 ± 10, and 150 ± 24 U per gram of dry BSG, respectively). Also, A. niger extracts resulted in the most effective for releasing sugars from BSG, obtaining up to 0.56 g per gram of dry BSG after 24 h without any pretreatment needed. Thus, the sugar-rich hydrolysate obtained with A. niger was used as a source for producing PHA by using two bacterial strains, namely, Burkholderia cepacia and Cupriavidus necator. Maximum PHA yield was achieved by using C. necator after 48 h with 9.0 ± 0.44 mg PHA•g −1 dry BSG. These results show the significant potential of BSG as raw material for obtaining value-added bioproducts and the importance of multiple valorization schemes to improve the feasibility of similar residue-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.