Today's health care is difficult to imagine without the possibility to objectively measure various physiological parameters related to patients' symptoms (from temperature through blood pressure to complex tomographic procedures). Psychiatric care remains a notable exception that heavily relies on patient interviews and self-assessment. This is due to the fact that mental illnesses manifest themselves mainly in the way patients behave throughout their daily life and, until recently there were no "behavior measurement devices." This is now changing with the progress in wearable activity recognition and sensor enabled smartphones. In this paper, we introduce a system, which, based on smartphone-sensing is able to recognize depressive and manic states and detect state changes of patients suffering from bipolar disorder. Drawing upon a real-life dataset of ten patients, recorded over a time period of 12 weeks (in total over 800 days of data tracing 17 state changes) by four different sensing modalities, we could extract features corresponding to all disease-relevant aspects in behavior. Using these features, we gain recognition accuracies of 76% by fusing all sensor modalities and state change detection precision and recall of over 97%. This paper furthermore outlines the applicability of this system in the physician-patient relations in order to facilitate the life and treatment of bipolar patients.
Abstract-Increase in workload across many organisations and consequent increase in occupational stress is negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of selfreporting and variability between and within individuals. With the advent of smartphones it is now possible to monitor diverse aspects of human behaviour, including objectively measured behaviour related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behaviour that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (in comparison to location, video or audio recording, for example) and because its low power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. 30 subjects from two different organizations were provided with smartphones. The study lasted for 8 weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify self reported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer.
Mental disorders can have a significant, negative impact on sufferers' lives, as well as on their friends and family, healthcare systems and other parts of society. Approximately 25 % of all people in Europe and the USA experience a mental disorder at least once in their lifetime. Currently, monitoring mental disorders relies on subjective clinical self-reporting rating scales, which were developed more than 50 years ago. In this paper, we discuss how mobile phones can support the treatment of mental disorders by (1) implementing human-computer interfaces to support therapy and (2) collecting relevant data from patients' daily lives to monitor the current state and development of their mental disorders. Concerning the first point, we review various systems that utilize mobile phones for the treatment of mental disorders. We also evaluate how their core design features and dimensions can be applied in other, similar systems. Concerning the second point, we highlight the feasibility of using mobile phones to collect comprehensive data including voice data, motion and location information. Data mining methods are also reviewed and discussed. Based on the presented studies, we summarize advantages and drawbacks of the most promising mobile phone technologies for detecting mood disorders like depression or bipolar disorder. Finally, we discuss practical implementation details, legal issues and business models for the introduction of mobile phones as medical devices.
In this paper we demonstrate how smart phone sensors, specifically inertial sensors and GPS traces, can be used as an objective "measurement device" for aiding psychiatric diagnosis. In a trial with 12 bipolar disorder patients conducted over a total (summed over all patients) of over 1000 days (on average 12 weeks per patient) we have achieved state change detection with a precision/recall of 96%/94% and state recognition accuracy of 80%. The paper describes the data collection, which was conducted as a medical trial in a real life every day environment in a rural area, outlines the recognition methods, and discusses the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.