Summary
In an attempt to find new types of anti‐sickling agents that specifically bind to intracellular sickle haemoglobin (HbS) without inhibition by plasma and tissue proteins or other undesirable consequences, we identified 5‐hydroxymethyl‐2‐furfural (5HMF), a naturally occurring aromatic aldehyde, as an agent that fulfils this criterion. Preliminary studies in vitro showed that 5HMF forms a high‐affinity Schiff‐base adduct with HbS and inhibits red cell sickling by allosterically shifting oxygen equilibrium curves towards the left. Further studies with transgenic (Tg) sickle mice showed that orally administered 5HMF was rapidly absorbed into the bloodstream from the gastrointestinal tract without being destroyed, traversed the red blood cell membrane and specifically bound with, and modified, HbS molecules at levels as high as 90%. Pretreatment of Tg sickle mice with 5HMF inhibited the formation of sickle cells and significantly prolonged survival time under severe hypoxia, compared with untreated mice, which died within 15 min because of sickling‐dependent pulmonary sequestration. These results indicate the feasibility of 5HMF as an attractive potential candidate for therapy of sickle cell disease.
Naturally occurring five-membered heterocyclic aldehydes, including 5-hydroxymethyl-2-furfural, increase the oxygen affinity of hemoglobin (Hb) and strongly inhibit the sickling of homozygous sickle red blood (SS) cells. X-ray studies of Hb complexed with these compounds indicate that they form Schiff base adducts in a symmetrical fashion with the N-terminal alphaVal1 nitrogens of Hb. Interestingly, two cocrystal types were isolated during crystallization experiments with deoxygenated Hb (deoxyHb): one crystal type was composed of the low-affinity or tense (T) state Hb quaternary structure; the other crystal type was composed of high-affinity or relaxed state Hb (with a R2 quaternary structure). The R2 crystal appears to be formed as a result of the aldehydes binding to fully or partially ligated Hb in the deoxyHb solution. Repeated attempts to crystallize the compounds with liganded Hb failed, except on rare occasions when very few R state crystals were obtained. Oxygen equilibrium, high performance liquid chromatography (HPLC), antisickling, and X-ray studies suggest that the examined heterocyclic aldehydes may be acting to prevent polymerization of sickle hemoglobin (HbS) by binding to and stabilizing liganded Hb in the form of R2 and/or various relaxed state Hbs, as well as binding to and destabilizing unliganded T state Hb. The proposed mechanism may provide a general model for the antisickling effects of aldehyde containing small molecules that bind to N-terminal alphaVal1 nitrogens of Hb. The examined compounds also represent a new class of potentially therapeutic agents for treating sickle cell disease (SCD).
Quantification of blood oxygen saturation on the basis of a measurement of its magnetic susceptibility demands knowledge of the difference in volume susceptibility between fully oxygenated and fully deoxygenated blood (Δχdo). However, two very different values of Δχdo are currently in use. In this work we measured Δχdo as well as the susceptibility of oxygenated blood relative to water, Δχoxy, by MR susceptometry in samples of freshly drawn human blood oxygenated to various levels, from 6 to 98% as determined by blood gas analysis. Regression analysis yielded 0.273 ± 0.006 and − 0.008 ± 0.003 ppm (cgs) respectively, for Δχdo and Δχoxy, in excellent agreement with previous work by Spees et al (MRM 2001;45:533–542).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.