This paper considers the design of anti-windup compensators with simple, transparent structures for multivariable constrained input systems. The main results in the paper show how, for multivariable plants with a particular structure, a multivariable anti-windup compensator can be constructed from several "single-loop" anti-windup compensators. Simple conditions, which can be interpreted as a linear program, are then derived which ensure that this concatenated compensator indeed guarantees stability of the multivariable system. The advantages of the resulting compensator is that it is easier to tune, and more transparent for implementation, than an unstructured multivariable compensator. Results from a nonlinear quadrotor simulation show the effectiveness of the proposed method.
Unmanned aerial vehicle (UAV) antenna tracking system is an electromechanical component designed to track and steer the signal beams from the ground control station (GCS) to the airborne platform for optimum signal alignment. In a tracking system, an antenna continuously tracks a moving target and records their position. A UAV tracking antenna system is susceptible to signal loss if omnidirectional antenna is deployed as the preferred design. Therefore, to achieve longer UAV distance communication, there is a need for directional high gain antenna. From design principle, directional antennas are known to focus their signal energy in a particular direction viewed from their radiation pattern which is concentrated in a particular azimuth direction. Unfortunately, a directional antenna is limited by angle, thus, it must always be directed to the target. The other limitation of a UAV mechanical beam steering system is that the system is expensive to maintain and with low reliability. To solve this problem, we are proposing the use of MIMO technology as a readily available technology for UAV beyond line of sight technology. Although UAV antenna tracking is domiciled in the mechanical beam steering arrangement, this study shows that this native technology could be usurped by MIMO beam forming.
In the last half decade or so, the buzz phrase in the business and research arena is Big Data and Big Data Analytics. One industry that can reap substantial benefits from big data and analytics is the mobile phone industry. Nigeria in the West Africa is one country where mobile phone market is considerably big. Over 90 per cent of individuals and corporate businesses completely rely on the mobile industry for their day-to-day transactions. Embracing advanced analytics of big data by the mobile operators in Nigeria will impact positively on revenue and reflect on GDP. In this paper, we discuss the business impact of big data analytics in the light of telecom industry. We point out the various ways the industry could leverage on big data and analytics to render customer-centric service and reap a good return on investment.
An increasing desire is to produce eco-friendly materials for varied engineering applications, such as natural fiber-reinforced composites (NFRCs). Although many research works on natural fiber polymer matrix composite exist, not much is known on the thermo-mechanical properties of acetic acid-treated particulate banana-sisal fiber reinforced polyester composite. Additionally, establishing the fiber constituent with a detrimental effect on thermal and mechanical properties for acetic acid-treated particulate banana-sisal reinforced polyester matrix composite is not well known. This work aims to examine the effect of banana-sisal particulate fiber on the thermal and mechanical properties of banana-sisal reinforced polyester matrix composites to address the gap. The composites were produced via the mechanical stir mix technique. Thermal, Fourier-transform infrared spectroscopy (FTIS), compressive, flexural, and impact analysis were conducted according to appropriate test standards. The results revealed that the thermal properties of the developed composites were not dependent on hybridization. Also, hybridization significantly enhanced the compressive and flexural properties, with 70B/30S and 50B/50S particulate fiber reinforced polyester matrix composite found to have the most superior compressive and flexural properties. A major contribution of this study is that the impact properties of the developed composites were dependent on the fiber composition and decreased as the sisal content percentage increased. In general, reinforced polyester matrix composite with 70B/30S particulate fiber has a preferable combination of thermal and mechanical properties.
The impact of daily emissions of gaseous and particulate pollutants of machines and industries on human health and the environment has attracted increasing concerns. This impact has significantly led to a notable increase in mortality in the highly industrialized zones. Therefore, monitoring air quality and creating public awareness are important for a safer future, which led the governments globally to invest multi-billion in policymaking and solution stratification to address the problem. This study aims to design a realtime Internet of Things low-cost air quality monitoring system. The system utilizes air quality and carbon monoxide sensors for monitoring gaseous pollutants. Moreover, the system utilizes an Arduino Nano development board equipped with a WiFi module to effectively send readings to a ThingSpeak online channel platform for instantaneous and real-time display of air quality. The ThingSpeak uses HTTP protocols to send emails in raising awareness of poor air quality. The level of concentration is monitored graphically through channels with the help of ThingSpeak to aid remote communication. A threshold value is set. Thus, when pollutants have become unhealthy and harmful, the system trips off an alarm, and e-mail notifications are sent to the officials. The results have shown that the work was successfully implemented a design of a low-cost air quality monitoring system using Arduino and ThingSpeak, showing that an air quality system can be implemented using a low-cost technology, Arduino and ThingSpeak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.